2. Solid-Liquid separation method- Filtration

<u>Aim</u>: Is to determine the flow rate of the tissue homogenate solution through filter media.

Principle:

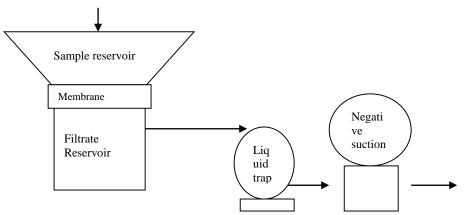
- Filtration is ubiquitous in solid liquid separation of suspension mixer.
- Liquid to be clarified is passed through a porous barrier.
- Large particles are retained at the filter surface or within the depth of filter medium; solvent and some small particles pass through the filter.
- Process is pressure driven and unlike sedimentation works well even when there is no density difference between the particulated and the suspending medium.
- When membranes tested using pure water most membranes give very high fluxes.
- But during actual filtration the flux is likely to be, very much lower.
- At the start of operation the flux is high and in some cases may approach the pure water flux.
- However, a rapid decline occurs over the first 20-30 min of operation followed by a gradient, but persistent, fall.
- This reduction in flux is caused by a combination of concentration polarization and fouling.

Equipments and reagents:

- 1. Sheet of membrane to test
- 2. Ground cell Suspension which can be loaded with flat sheet of membrane.
- 3. Ancillary Equipment for operation of membrane module.
- 4. Timer.

Determination of flow rate of homogenate solution through filter media:

- 1) Close all the inlet and outlets of permeate reservoir and Sample reservoirs of the Ancillary Filtration Unit
- 2) Fill tissue homogenate solution to the Sample reservoir.
- 3) Cut out a disc of membrane to fit into a dead-end filtration unit.
- 4) Wash thoroughly to remove preservatives and wetting agents and fix the disc to the Filter Membrane holder.
- 5)Load the tissue homogenate solution through the membrane by opening the inlet and outlet valves of the sample reservoir and switching on the pump.
- 6)Apply Fixed Pressure and measure the permeate flow rate by measuring volume filtered over period of 5, 10, 15,20, 25 and 30 sec.
- 7)Plot a graph by plotting flow rate against time.


Results:

1. Flov	rate of the	distilled	water after	2000 sec:	0.2 cc/sec
---------	-------------	-----------	-------------	-----------	------------

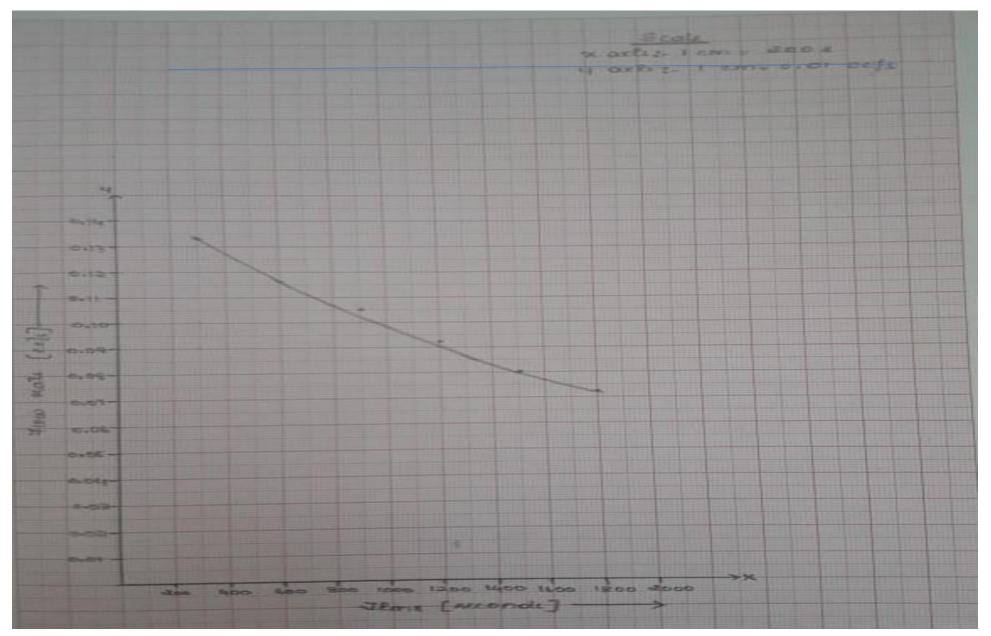
3. Difference in the flow rate: 0.13 cc/sec

Observation

A. Construction details of Filtration Unit:

Observation

Membrane fouling		Cake formation			
Time in second	Volume collected in cc/sec in untreated membrane	Volume collected in cc/sec in treated membrane	Time in second	Volume collected in cc/sec	Rate


1	~	BE	0.			TI.	01	w.	0	
O	в	SE	KI	11	23	3.0	U	7	9	M

JEALE (2)	Volume of eariple	Led)
300	40	0.133
600	70	0.116
900	95	0.105 3 1915LAL
	at attologists	
1500	a blugge and	0.08
1800	ference OE Langer	0.042 12 barre

WARA

Timber & 18

Note: plot a graph of flow rate v/s time in sec both for membrane fowling and cake formation

