
P. A. EDUCATIONAL TRUST’S (PAET)

P.A. COLLEGE OF ENGINEERING
MANGALURU -574153 , KARNATAKA (INDIA)

OBJECT ORIENTED CONCEPTS (17CS42)

IV SEMESTER 2018-19

DR ZAHID ANSARI

17CS42: MODULE-I:
INTRODUCTION TO OBJECT ORIENTED

CONCEPTS:

 A Review of structures,

 Procedure–Oriented Programming

system,

 Object Oriented Programming System,

 Comparison of OO Language with C,

 Console I/O,

 variables and reference variables,

 Function Prototyping,

 Function Overloading.

 Class and Objects: Introduction,

 Member functions and data,

 Objects and functions,

 objects and Arrays,

 Namespaces,

 Nested classes,

 Constructors,

 Destructors.

• Learn fundamental features of an object oriented language of C++ and

JAVA

• Set up Java JDK environment to create, debug and run simple Java

programs.

• Create multi-threaded programs and event handling mechanisms.

• Introduce event driven Graphical User Interface (GUI) programming using

applets and swings.

COURSE OBJECTIVES:

• TEXT BOOK(S):

1. Sourav Sahay, Object Oriented Programming with C++ , Oxford

University Press,2006 (Ch 1: 1.1 to 1.9 Ch 2: 2.1 to 2.6 Ch 4: 4.1 to 4.2)

TEXT:

Chapter 1
Introduction to C++

• To understand procedural oriented languages, we need to

review structure concept.

• Need for Structures – value of 1 variable depends on the value

of another variable.

Eg- Date can be programmatically represented in C by 3

different integer variables.

int d,m,y;

Here: d-date, m-month, y-year

1.1 REVIEW OF STRUCTURES

•

•Although 3 variables are not grouped in a code, they actually

belong to the same group. The value of 1 may influence the

value of other.

•Consider a function nextday() that accepts the addresses of 3

integers that represent a date and changes these values to

represent next day.

Prototype of this function:

//for calculating the next day

void nextday(int *,int *, int *);

Suppose

d=1;

m=1;

y=2002; //1st january 2002

If we call nextday(&d, &m, &y);

d becomes 2, m=1,y=2002 //2nd January 2002 (d affected)

But if d=28;

m=2;

y=1999;//28th Feb 1999

and we call the function as

nextday(&d, &m, &y);

d becomes 1, m will become 3 and y will become 1999.

Again if d=31;
m=12;
y=1999;//31th Dec 1999

and we call the function as

nextday(&d, &m, &y);

d will become 1 , m will become 1 and y becomes 2000.

• A change in 1 variable may change the value of other 2.

• No language construct exist that actually places them in
same group.

MEMBERS OF WRONG GROUP MAY BE
ACCIDENTALLY SENT TO THE FUNCTION

d1=28; m1=2; y1=1999; //28thfeb99

d2=19; m2=3; y2=1999; //19thmarch99

nextday(&d1,&m1,&y1); //ok

nextday(&d1,&m2,&y2); //incorrect set passed

Above listing show problems in passing groups of

programmatically independent but logically dependent

variables

,

There is nothing in language itself that prevents the wrong set of variables from

being sent to the function.

Suppose nextday() accepts an array as parameter Then its prototype:

void nextday(int *);

Let us declare date as an array of 3 integers.

int date[3];

date[0]=28;

date[1]=2;

date[2]=1999; //28th Feb 1999

The values of date[0],date[1],date[2] is set to 1,3 and 1999

This method is not convincing. There is no data type of date itself.

The solution to this problem is to create a data type called date itself using

structures.

struct date d1;
d1.d=28;
d1.m=2; //Need for structures
d1.y=1999;
nextday(&d1);

• d1.d, d1.m, d1.y will be set correctly to 1,3,1999, since the

function takes the address of an entire structure variable as

parameter at a time as there is no chance of variables of

different groups being sent to the function.

• Structure is a programming construct in C that allows us to

put the variables together.

struct date{

int d;

int m;

int y;

};

• Library programmers use structures to create new data
types.

• Application programs use these new data types by
declaring variables of this data type
struct date d1;

They call associated functions by passing these variables /
addresses to them.
d1.d=31;

d1.m=12;

d1.y=2003;

nextday(&d1);

They use resultant value of the passed variable further as per
requirement.

printf(“The next day is: %d/%d/%d\n”,d1.d,d1.m,d1.y);

Output

The next day is:01/01/2004

CREATING A NEW DATA TYPE USING
STRUCTURES

Creation of a new data type is a 3 step process.

1. Put structure definition and prototypes of associated
functions in a header file.

2. Put the definition of associated functions in a source
code and create a library.

3. Provide the header file and library in any media to
other programmers who want to use this new data
type.

Creating a structure and its associated functions are 2
steps to constitute one complete process

STEP 1:
PUTTING STRUCTURE DEFINITION AND PROTOTYPES

OF ASSOCIATED FUNCTIONS IN A HEADER FILE.

//date.h contains structure definition &

// prototypes of associated functions

struct date

{

int d, m, y;

}

void nextday(struct date *);

void getsysdate(struct date *);

STEP 2:
PUT DEFINITION AND OTHER PROTOTYPES IN A

SOURCE CODE AND CREATE A LIBRARY

#include “date.h”

void nextday(struct date *p)

{//calculate date represented by *p and set it to
*p}

void getsysdate(struct date *p){ // determine
//current system date & set it to *p}

//definitions of other useful & other relevant

//functions to work upon variables of date
structure

USING STRUCTURES IN APPLICATION
PROGRAMS IS A 3 STEP PROCEDURE

1. Include header file provided by programmer in the source

code.

2. Declare variables of new data type in the source code.

3. Embed calls to the associated functions by passing these

variables in the source code.

4. Compile the Source code to get the object file.

5. Link the Object file with the library provided by the library

programmer to get the executable or another library.

STEP1
INCLUDE THE HEADER FILE PROVIDED BY THE

PROGRAMMER IN THE SOURCE CODE

//beginning of dateuser.c

#include “date.h”

void main()

{

…

…

}//end of dateuser.c

STEP 2
DECLARE VARIABLES OF NEW DATA TYPE IN THE

SOURCE CODE.

//beginning of dateuser.c

#include “date.h”

void main()

{ struct date d;

…

…

}//end of dateuser.c

STEP 3
EMBED CALLS TO ASSOCIATED FUNCTIONS BY
PASSING THESE VARIABLES IN SOURCE CODE

//beginning of dateuser.c

#include “date.h”

void main()

{

struct date d;

d.d=28; d.m=2; d.y=1999;

nextday(&d);

…

} //end of dateuser.c

Procedure Oriented System has the following features

• Program codes are divided into smaller programs known as functions

• Focus is on functions.

• Functions can share global data

• Data can move freely around the system from one function to other
function. Data is passed from one function to another to be read
from or written into.

• Functions are associated with the data but they are not a part of it.
Instead they receive variables / their addresses and work upon them.

• Employs top-down approach in program design.

1.2 PROCEDURE ORIENTED PROGRAMMING

SYSTEM

Drawback/Disadvantage

1. Data is not secure and can be manipulated by any
function/procedure.

2. Associated functions that were designed by library programmer
don’t have exclusive rights to work upon the data.

3. Application program might modify the data by some code
inadvertently written in application program itself

.

Consider an application of around 25,000 lines in which the variables of structure is
used quite extensively

1. Testing may find that date being represented by one of these variables has
become 29th Feb 1999.

2. This faulty piece of code can be anywhere in the program.

3. Hence Debugging will involve a visual inspection of the entire code & will not be
limited to associated functions only.

4. While distributing his/her application, application programmer cant be sure that
program would run successfully.

5. Every new piece of code accessing structure variable will have to be
inspected/tested again to ensure that it doesn’t corrupt the structure.

6. Compilers that implement procedure oriented programming systems don’t
prevent unauthorized functions from accessing the structure variables.

7. To ensure a successful compilation of code, application programmer is
forced to remove those statements that access data members of
structure variables.

8. Lack of data security of procedure oriented programs has led to
Object Oriented Programming Systems

1.3 OBJECT ORIENTED PROGRAMMING SYSTEMS

Model real-world objects (RWO)

• RWO has internal parts & interfaces that enable us to operate them.

• Eg: LCD is RWO-has a fan and a lamp.

There are 2 switches 1 to operate fan & other to operate lamp.

Switch operation has rules.

• If lamp is switched on, fan is automatically switched on, else LCD will be damaged.

• Lamp is also switched off if fan is switched off and switches are linked with each other.

Common Characteristic of RWO

• If a perfect interface is required to work on an object , it will have exclusive rights to do so.

• Coming to C++, observed behaviour of LCD projector resembles the desired behaviour

of the date’s structure variables.

OO PROGRAMMING SYSTEMS
• Emphasis is on data rather than procedures or functions.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data are tied together in the data structure

• Data is hidden and cannot be accessed by external functions.

• Objects may communicate with each other through functions.

• New data and functions can be easily added whenever necessary.

• Follows bottom-up approach in program design.

• Compilers implementing OOPs enable data security enforcing by throwing compile-time
errors against the pieces of code.

• RWO ensure a guaranteed initialization of objects

1. Class

2. Object

3. Encapsulation

4. Data Hiding and Abstraction

5. Inheritance

6. Polymorphism

7. Message Passing

8. Dynamic Binding etc.

OOP FEATURES/CHARACTERISTICS

• CLASS: Class is a collection of objects of similar type. Objects are variables of
the type class. Once a class has been defined, we can create any number
of objects belonging to that class. Eg: grapes bannans and orange are the
member of class fruit. Example:

Fruit orange; // Here object orange is an instance of class fruit.

• OBJECT: Object is a collection of attributes/entities. Objects take up space in
the memory. Objects are instances of classes. When a program is executed ,
the objects interact by sending messages to one another. Each object
contain data and code to manipulate the data. Objects can interact
without having know details of each others data or code.

• ENCAPSULATION :

• Combining data and functions into a single unit called class and the process
is known as Encapsulation. Data encapsulation is important feature of a
class. Class contains both data and functions. Data is not accessible from
the outside world and only those function which are present in the class can
access the data.

• Data Hiding and Abstraction

• The insulation of the data from direct access by the program is called data
hiding. Hiding the complexity of program is called Abstraction and only
essential features are represented. In short we can say that internal working is
hidden.

• INHERITANCE: it is the process by which object of one class
acquire the properties or features of objects of another
class. The concept of inheritance provide the idea of
reusability means we can add additional features to an
existing class without Modifying it. This is possible by driving
a new class from the existing one. The new class will have
the combined features of both the classes.

• Example: Sparrow is a part of the class flying bird which is
again a part of the class bird.

INHERITANCE

In Inheritance, both data and functions may be inherited

• Parent class can be given the general characteristics,

while its child may be given more specific

characteristics.

• Inheritance allows code reusability by keeping code in

a common place – the base structure.

• Inheritance allows code extensibility by allowing

creation of new structures that are suited to our

requirements compared to existing structures.

Inheritance – a process by which 1 object
can acquire the properties of another
object. This is important as it supports
classification.

• Most knowledge is made of hierarchical
Classification.

Eg-Red delicious apple is part of apple
classification which in turn is a part of fruit
class, which is under the larger class food.

• Inheritance mechanism makes it possible for
one object to be a specific instance of a
more general class.

Food

Fruit

Apple

Red Delicious
Apple

POLYMORPHISM

• POLYMORPHISM: A greek term means ability to take more than
one form. An operation may exhibit different behaviours in
different instances. The behaviour depends upon the types of
data used in the operation.

• Function overloading & Operator Overloading

• Static & Dynamic Polymorphism

• MESSAGE PASSING: The process by which one object can interact with other
object is called message passing.

• DYNAMIC BINDING: Refers to linking of function call with function definition is
called binding and when it is take place at run time called dynamic binding.

C C++

1. C compiler cannot execute C++ programs

2. In C, u may / may not include function prototypes

1. C++ compiler can execute C programs

2. In C++, you must Include function prototypes

3. C doesn’t allow for default arguments 3. C++ lets you to specify default arguments in

function prototype

4. Declaration of the variables must be at the

beginning

4. Declaration of the variables can be anywhere

before using

5. If a C program uses a Local variable that has Same

name as global variable, then C uses the value of a

local variable.

6. Function overloading is not there.

7. Function inside the structure is not allowed

8. Object initialization doesn’t exist

9. Data hiding, data abstraction and data

encapsulation feature doesn’t exist

5. In C++, you can instruct program to use value of

global variable with scoperesolution

Eg- cout << “I am global var :” << ::I;

6. Function overloading exists

7. Function inside the structure is allowed

8. Object initialization (constructor) exist

9. Data hiding, data abstraction and data

encapsulation exists in C++

CONSOLE INPUT-OUTPUT IN C++

1. Console output

i. cout << constant/variable

ii. cout<<endl;

iii. cout<<“\n”;\\newline

2. Console input

i. cin>> variable

VARIABLES IN C++

• Can be declared anywhere in the C++ program before using them.

REFERENCE VARIABLE

• Used as aliases for other variables within a function.

• All operations supposedly performed on the alias (i.e., the

reference) are actually performed on the original variable.

• An alias is simply another name for the original variable.

• Must be initialized at the time of declaration.

• Example

int count = 1;

int & iRef = count;

iRef++;

• Increments count through alias iRef

REFERENCE VARIABLE
#include <iostream.h>

void main()

{

int x=3;

int &y=x;

cout <<“x=“<<x endl<<“y=“<<y<<endl;

y=7;

cout <<“x=“<<x <<endl<<“y=“<<y<<endl;

}

OP:

x=3

y=3

x=7

Y=7

Creating a reference as an alias to another

variable in the function

Assign 7 to x through alias y

REFERENCE VARIABLE

• The value of a reference variable can be read in the same way as the value of an

ordinary variable is read. Consider the following:
#include <iostream.h>

void main()

{

int x, y;

int x=100;

int & iRef=x;

y=iRef;

cout <<y<<endl;

y++; // x and iRef unchanged

cout <<x <<endl<<iRef<<endl<<y<<endl;

}

100

100

100

101

CALL BY REFERENCE

• Reference variable can be a function argument and thus change the

value of the parameter that is passed to it in the function call.

• An illustrative example follows:

44 1 // Fig. 18.5: fig18_05.cpp

 2 // Comparing pass-by-value and pass-by-reference with references.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 int squareByValue(int); // function prototype (value pass)

 8 void squareByReference(int &); // function prototype (reference pass)

 9

10 int main()

11 {

12 int x = 2; // value to square using squareByValue

13 int z = 4; // value to square using squareByReference

14

15 // demonstrate squareByValue

16 cout << "x = " << x << " before squareByValue\n";

17 cout << "Value returned by squareByValue: "

18 << squareByValue(x) << endl;

19 cout << "x = " << x << " after squareByValue\n" << endl;

20

21 // demonstrate squareByReference

22 cout << "z = " << z << " before squareByReference" << endl;

23 squareByReference(z);

24 cout << "z = " << z << " after squareByReference" << endl;

25 return 0; // indicates successful termination

26 } // end main

Function illustrating pass-by-value

Function illustrating pass-by-reference

Variable is simply mentioned by name in

both function calls

45

27

28 // squareByValue multiplies number by itself, stores the

29 // result in number and returns the new value of number

30 int squareByValue(int number)

31 {

32 return number *= number; // caller's argument not modified

33 } // end function squareByValue

34

35 // squareByReference multiplies numberRef by itself and stores the result

36 // in the variable to which numberRef refers in the caller

37 void squareByReference(int &numberRef)

38 {

39 numberRef *= numberRef; // caller's argument modified

40 } // end function squareByReference

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Receives copy of argument in main

Receives reference to argument in main

Modifies variable in main

Call by Reference and Call by Value in C++

RETURN BY REFERENCE

• Functions can return by reference also.

• An illustrative example follows: #include <iostream.h>

int & large (int &, int &);

void main()

{

int a,b;

a=5; b=10;

int & r = large (a,b);

r=-1;

cout <<a <<endl<<b<<endl;

}

int & large (int & x, int & y)

{

if (x>y)

return x;

else

return y;

}

O/P:

5

-1

RETURN BY REFERENCE

• In the example program , variable x and a refer to the same location ,

while y and b refer to the same location.

• From the large () function , a reference to y, that is reference to b is

returned and stored in reference variable r.

• The function large() does not return the value y because the return type is

int & and not int.

• Thus the address of r becomes equals to the address of b. So, any

change in value of r also changes the value of b

RETURN BY REFERENCE

• The previous program can be shortened as:

#include <iostream.h>

int & large (int &, int &);

void main()

{

int a,b;

a=5; b=10;

large (a,b)=-1;

cout <<a <<endl<<b<<endl;

}

Output

5

-1

• A function that returns by reference, primarily returns the address of the

returned variable

ASSIGNMENT (=) OPERATOR WITH VARIOUS CASES

• If the compiler finds a non constant variable on the left side of the ‘=‘ operator , it does

the following actions:

 Determine the address of the variable

 Transfer the control to the byte that has that address and

 Write the value on the right of the ‘=‘ operator into the block that begins with the
byte found above.

• If a function call is found on the left side of the ‘=‘ operator , it does the following

actions:

 Transfer the control to the byte whose address is returned by the function
 Write the value on the right of the ‘=‘ operator into the block that begins with the

byte found above.

• If the compiler finds a variable on the right side of the ‘=‘ operator , it does the following
actions:

 Determine the address of the variable

 Transfer the control to the byte that has that address

 Read the value from the block that begins with the byte found above

 Push the read value in to the stack

• If the call is found on right side of the ‘=‘ operator , compiles does the following actions:

 Transfer the control to the byte whose address is returned by the function

 Read the value from the block that begins with the byte found above

 Push the read value in to the stack

• A constant cannot be placed on the left of the assignment operator. This is because

constants do not have a valid address.

• A call to a function that returns by reference can be placed on the left side of an
assignment operator.

• We must avoid returning a reference to a local variable , because it can lead
to run-time errors

Example:
#include <iostream.h>

int & abc ();

void main()

{

abc() = -1;

}

int & abc ()

{

int x;

return x;

}

• The problem here is x will go out of scope .

• Thus the statement abd()=-1 will write -1 in an unallocated block of memory.

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

RETURN BY REFERENCE

FUNCTION PROTOTYPE,
FUNCTION OVERLOADING

FUNCTION PROTOTYPING

• Function Prototyping is necessary in C++.

• C++ strongly supports function prototypes.

• Prototype describes the function’s interface to the compiler

• Tells the compiler the return type of function, number , type and sequence of its formal

arguments

• General syntax:

return-type function-name (argument_list);

Eg: void interest (float, int, float);

• Since function prototype is also a statement , a semicolon must follow it.

• Providing names to the formal arguments in function prototype is optional.

With prototyping , compiler ensures following

1. The return value of a function is handled correctly.

2. Correct number and type of arguments are passed to a function.

What happens in the absence of prototype?

1. Suppose, compiler assumes that the type of the returned value is an integer. However, the called function

may return a value of an incompatible type(say struct type) .

2. Now , suppose an int variable is equated to a function call where the function call proceeds the function

definition . In this situation, the compiler will report an error against the function definition and not the

function call

3. However, if the function definition is in different file to be compiled separately, then no compile time

errors will arise. Instead , wrong results will arise during run-time (weird results)

• Since C++ compiler require function prototyping, it will report

error against function call because no function prototype is

provided to resolve the function call.

• Compiler may still give an error, if function call doesn’t match

the prototype.

• Hence prototyping guarantees protection from errors arising out

of incorrect function calls.

• Function Prototyping produces automatic type of conversion wherever
appropriate.

• For example, if the compiler expects an int type value, but a type of

double value is wrongly passed. During run time, the value in first 4

bytes of the passed eight bytes is extracted. This is obviously

undesirable.

• However, C++ compiler converts double type to int type

automatically , this this because of the function prototype before the

function call.

• Also, the automatic type conversion takes place only when it makes

sense. For eg, struct to int is not possible.

DEFAULT ARGUMENTS

• Default values are given in the function prototype declaration.

• Default arguments must be specified only in function prototypes. They should

not be specified in function definitions

• Whenever a call is made to a function without specifying an argument, the

program will automatically assign values to the parameters.

• Default values are always assigned from right to left.

For example :

 void interest (float p, int t, float r=0.25); //legal

void interest (float p, float r=0.25, int t); //illegal

void interest (float p, int t=10, float r=0.25); //legal

void sum(int, int, int=6,int=10);

void main() {

int a, b, c, d;

cout<<“enter any two numbers.\n”;

cin >>a >>b;

sum (a,b);

}

void sum (int a1, int a2, int a3, int a4) {

int temp;

temp=a1 + a2 + a3 +a4;

cout << “sum=“ << temp;

}

Output:
enter any two numbers:

11 21

sum=48

If input is given for c and d, then default values will not be used.

DEFAULT ARGUMENTS

void DisplayStars(int = 10, int =1);

void main()

{ DisplayStars(); cout << endl;

DisplayStars(5); cout << endl;

DisplayStars(7,3);

}

void DisplayStars(int Cols, int Rows) {

for (int Down = 0; Down < Rows; Down++) {

for (int Across=0; Across < Cols;Across++)

cout << ‘*’;

cout << endl;

} }

• Care is taken in specifying default arguments in function overloading;

otherwise and ambiguity might occur.

For eg:

•
int add (int, int, int =0);

int add (int, int)

Can confuse the compiler

DEFAULT ARGUMENTS (CONTD…)

Problem solving using C++

FUNCTION OVERLOADING

• Overloading refers to the use of same thing for different purposes.

• We can use the same function name to create functions that performs variety of

different tasks, called function overloading (polymorphism).

• For example a function add() can be overloaded as:

int add(int a, int b);

int add(int a, int b, int c);

float add(float a, float b);

Problem solving using C++

FUNCTION OVERLOADING (CONTD…)

• A function call first matches the prototype having the same number and

type of argument and then calls the appropriate function for execution.

• The function selection involves the following steps:

1. The compiler first tries to find the exact match in which the type of actual

arguments are same, and use that function

2. If the exact match is not found , then the compiler uses the integral

promotions to the actual parameters such as:

char to int

int to long or float

float to double to find a match

Problem solving using C++

3. If the conversion is possible to have multiple matches then the compiler

will generate an error message (ambiguous situation).

Eg:

long square(long n)

float square(float n)

A call such as: square(10)

FUNCTION OVERLOADING (CONTD…)

Problem solving using C++

COMPUTE AREA OF SQUARE, RECTANGLE AND TRIANGLE

void main() {

int area(int);

int area(int, int);

float area(float, float);

cout<<area(10)<<“\n”;

cout<<area(10,5)<<“\n”;

cout<<area(10.5, 5.5)<<“\n”;

}

int area(int s) { return s*s; }

int area(int a, int b) { return a*b;}

float area(float a, float b) { return (0.5*a*b); }

void main() {

 cout << volume(10) << “\n”;

 cout << volume(2.5, 8) << “\n”;

 cout << volume(100L, 75, 15) << “\n”;

}

// Function definitions

int volume(int s) { return(s*s*s); }

double volume(double r, int h) { return(3.14*r*r*h); }

long volume(long l, int b, int h) { return(l*b*h); }

Output:

1000

157.26

112500

COMPUTE volume of cube, cylinder and cuboid

Chapter 2

Classes and objects

INTRODUCTION TO
CLASSES AND OBJECTS

• Classes are to C++ while structure are to C. Both provide the library
programmer a means to create new data types.

• In C structure there is no guarantee that the client programs will use
only the functions which manipulate the members of variables of the
structure.

• Note that in C, there is no facility to bind the data and the code that
can have the exclusive rights to manipulate the data. This may lead to
run-time bugs.

• The C compiler does not provide the library programmer with the
facilities such as: data encapsulation, data hiding and data
abstraction.

INTRODUCTION TO
CLASSES AND OBJECTS

• C++ compiler provides a solution to the problem by redefining the
structure , which allow member functions also.

struct Rectangle

{

int width;

int length;

void setwidth(int w) (width=w;}

void setlength(int l) (length=l;}

int area() { return length*width; }

};

INTRODUCTION TO
CLASSES AND OBJECTS

void main() {

Rectangle r1,r2;

r1.setwidth(3);

r1.setlength(5);

r2.setwidth(4);

r2.setlength(6);

cout<<“Area of r1:”<<r1.area();

cout<<“Area of r2:”<<r2.area();

}

INTRODUCTION TO
CLASSES AND OBJECTS

• It is possible to define functions within the scope of the structure definition. Because

of this, not only the member data of the structure can be accessed through the

variables of the structures but also the member functions can be invoked.

• For example , r1.setwidth(2) and r1.setlength(5) assigns r1.width and r1.length to 2

and 5 respectively.

PRIVATE AND PUBLIC MEMBERS

• Advantage of having member function in structure is, we can put data and

functions that work on the data together. But the problems in code

debugging can still arise.

• Specifying the member functions as public but member data as private gives

the advantage.

struct Rectangle {

private: int width;

int length;

public:

void setwidth (int w) {width=w;}

void setlength (int l) {length=l;}

int area() {return length*width;}

};

PRIVATE AND PUBLIC MEMBERS

• Upon declaring the member data under private part and member functions under
public part tells the compiler that width and length are private data members of the
variables of the structure Rectangle and member functions are public.

• The values of data members width and length can be accessed/modified only
through the member functions of the structure and not by non member functions.

void main() {

Rectangle r1,r2;

r1.setwidth(3);

r1.setlength(5);

r1.width++; //error , non-member function accessing private data

r2.setwidth(4);

r2.setlength(6);

cout<<“Area of r1:”<<r1.area();

cout<<“Area of r2:”<<r2.area();

}

PRIVATE AND PUBLIC MEMBERS

• Thus the values of width and length can only be accessed/modified by member
functions of the structure and not by non member function. Compiler gives an error
message, if any violation made to this restriction.

• The private and public keywords are known as access modifiers or access specifiers.

• C ++ introduces a new keyword class as a substitute to the keyword struct.

• In a structure , members are public by default . On the other hand class members are
private by default.

PRIVATE AND PUBLIC MEMBERS

• The structure Rectangle can be redefined by using class keyword. Example:

class Rectangle {

int width;// private by default

int length; // private by default

public:

void setwidth(int w) {width=w;}

void setlength(int l) {length=l;}

int area() { return length*width; }

};

• The struct keyword is has been retained to maintain backward compatibility with C.

OBJECTS

• Variables of the class are known as objects.

• The memory requirement of object of class and variable of structure

are same, if both have same data members.

• Introducing member functions does not influence the size of objects.

• Moreover, making data members private or public does not influence

the size of objects.

OBJECTS

Example:

struct A {

char c;

int i;

};

class B {

char c;

int i;

};

void main(){

cout<<sizeof(A)<<endl<<sizeof(B);

}

SCOPE RESOLUTION OPERATOR

• The scope resolution operator (::) makes it possible for the library
programmer to define the member functions outside their respective
classes.

• The scope resolution operator signifies the class to which the member
functions belong.

• The class name is specified on the left-hand side of the scope
resolution operator. The name of the function being defined is on the
right-hand side.

SCOPE RESOLUTION OPERATOR

Example:

class Rectangle {

int width;// private by default

int length; // private by default

public:

void setwidth (int); //prototype

void setlength(int) ; //prototype

int area(); //prototype

};

void Rectangle::setwidth (int w) { width=w;} // definition

void Rectangle::setlength (int l) { length=l;} // definition

int Rectangle::area() { return length*width; } //definition

CREATING LIBRARIES USING THE
SCOPE RESOLUTION OPERATOR

Creating a new data type in C++ using classes is a three-step process that is

executed by the library programmer.

Step 1 Place the class definition in a header file.

Step 2 Place the definitions of the member functions in a C++ source file (the library source

code). A file that contains definitions of the member functions of a class is known as the

implementation file of that class. Compile this implementation file and put in a library.

Step 3 Provide the header file and the library, in whatever media, to other programmers

who want to use this new data type.

USING CLASSES IN APPLICATION PROGRAMS

STEPS FOLLOWED BY PROGRAMMERS FOR USING THE NEW DATA TYPE

Step 1 Include the header file provided by the library programmer in their source code.

Example:

#include <Rectangle.h>

void main () {

…………..

…………..

}

Step 2 Declare variables of the new data type in their source code.

Example:

#include <Rectangle.h>

void main () {

Rectangle r1,r2;

…………..

}

Step 3 Embed calls to the associated functions by passing these variables in their source code.
Example:

#include <Rectangle.h>

void main () {

Rectangle r1,r2;

r1.setwidth(3);

r1.setlength(5);

r2.setwidth(4);

r2.setlength(6);

cout<<“Area of r1:”<<r1.area();

cout<<“Area of r2:”<<r2.area();

}

Step 4 Compile the source code to get the object file.

Step 5 Link the object file with the library provided by the library programmer to get the executable or
another library.

THE THIS POINTER

• The C++ compiler creates and calls member functions of class objects by

using a unique pointer known as the this pointer.

• It is always a constant pointer.

• The this pointer always points at the object with respect to which the

function was called.

WORKING OF THIS POINTER

• Once the compiler is sure that no attempt is made to access the private

members of an object by nonmember functions, it converts C++ code into

an ordinary C language code as follows.

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

1. IT CONVERTS CLASS INTO STRUCTURE WITH ONLY DATA MEMBERS AS FOLLOWS

Before

class Rectangle {

int width;// private by default

int length; // private by default

public:

void setwidth (int); //prototype

void setlength(int) ; //prototype

int area(); //prototype

};

After

struct Rectangle {

int width;

int length;

};

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

2. IT PUTS A DECLARATION OF THE CONSTANT THIS POINTER AS A LEADING FORMAL
ARGUMENT IN THE PROTOTYPES OF ALL MEMBER FUNCTIONS AS FOLLOWS

Before –

void setwidth (int);

After -

void setwidth (Rectangle * const , int);

Before –

void setlength(int)

After –

void setlength (Rectangle * const , int);

Before –

int area();

After –

int area(Rectangle * const);
Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

3.It puts the definition of this pointer as a leading formal argument in the
definitions of all member functions.

It also modifies all statements to access object members by accessing through
the this pointer using the pointer-to-member access operator (->).

Before –

void Rectangle :: setlength (int x) {
length = x;

}

After –

void setlength(Rectangle* const this, int x) {

this -> length = x;

}

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

Before –

void Rectangle :: setwidth(int x){ width = x; }

After –

void setwidth(Rectangle* const this , int x) {

this -> width = x;

}

Before –

int Rectangle:: area() { return length * width; }

After –

int getFeet(Rectangle * const this) {
return (this->length * this->width);

}

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

4. PASSES THE ADDRESS OF INVOKING OBJECT AS LEADING PARAMETER TO EACH
CALL TO THE MEMBER FUNCTION AS FOLLOWS

Before –

r1.setwidth(3);

After -

setwidth(&r1, 3);

Before –

r1.setlength(5);

After –

setlength(&r1 , 5);

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

• Its evident that ‘this’ pointer should continue to point at same object , the object
with respect to which the member Function has been called throughout the
lifetime.

• Hence the compiler creates it as a constant pointer.

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

class Distance { //Distance.h

int feet;

float inches;

public:

void setFeet(int); //only member function

int getFeet(); //prototypes are given

void setInches(); //in the class definition.

float getInches();

Distance add(Distance);

};

Prof. B.R.Mohan, SSE--> www.bookspar.com | Website for students | VTU NOTES

Distance add(Distance dd) {

Distance temp;

temp.feet = feet+dd.feet;

temp.inches=inches+ dd.inches;

return temp;

}

// described conversion for this add() using this ptr

Distance add(Distance * const this , Distance dd) {

Distance temp;

temp.feet = this->feet+dd.feet;

temp.inches=this->inches+ dd.inches;

return temp;

}

A statement d3=d1.add(d2) is invoked as d3=add(&d1,d2);

DATA ABSTRACTION

• Data abstraction is a virtue by which an object hides its internal operations from the rest

of the program.

• Data abstraction makes it unnecessary for the client programs to know how the data is
internally arranged in the object.

• This obviates the need for the client programs to write precautionary code upon creating

and while using objects. And Data abstraction is effective due to data hiding only.

• Perfect definitions of the member functions are guaranteed to achieve their objective

because of data hiding. This is the essence of the object-oriented programming system.

• Real-world objects have not only working parts but also an exclusive interface to these

inner-working parts. A perfect interface is guaranteed to work because of its exclusive

rights.

DATA ABSTRACTION

• Consider a Distance class. The library programmer, who has designed the

‘Distance’ class, wants to ensure that the ‘inches’ portion of an object of

the class should never exceed 12. If a value larger than 12 is specified by an

application programmer while calling the ‘Distance::setInches()’

function, the logic incorporated within the definition of the function should

automatically increment the value of ‘feet’ and decrement the value of

‘inches’ by suitable amounts.

• Example: A modified version of ‘Distance::setInches’ function is as
follows:

void Distance::setInches(int i) {

inches=i;

if (inches>=12) {

feet=feet+inches/12;

inches=inches%12;

}

}

DATA ABSTRACTION

• Now, we notice that an application programmer need not send inch values
always less than 12 while calling the function ‘Distance::SetInches()’ .
By default the logic of the function does necessary adjustments.

• Similarly, the definition of the ‘Distance::add()’ function should also be
modified as follows by the library programmer. i.e., either an invoking
object’s or argument object’s ‘inches’ portion can be greater than 12.

Distance Distance::add(Distance d) {

Distance temp;

temp.feet = feet+d.feet;

temp.Setinches(inches+ d.inches);

return temp;

}

• Note that the data abstraction is effective due to data hiding only.
Perfect definitions of member functions are guaranteed to achieve
their objective because of data hiding

ARROW OPERATOR

• Member functions can be called with respect to an object through a

pointer pointing at the object. The arrow operator (->) does this.

• The definition of the arrow (->) operator has been extended in C++. It

takes not only data members on its right as in C, but also member

functions as its right-hand side operand.

ARROW OPERATOR
• Example:

#include <iostream.h>

#include <Distance.h>

void main () {

Distance d, *dptr;

dptr= &d;

dptr->setFeet(2);

dptr->setInches(10);

cout<<dptr->getFeet()<<“\t”<<dptr->getInches();

}

If the operand on its right is a data member, then the arrow operator behaves just as it does in C

language. However, if it is a member function of a class, then the compiler simply passes the value of

the pointer as an implicit leading parameter to the function call. For example:

dptr->setFeet(2) after conversion become: setFeet(dptr,2) // ‘dptr’ value is copied to ‘this’ pointer.

CALLING ONE MEMBER
FUNCTION FROM ANOTHER

• One member function can be called from another. Example:

class A {

int a;

public:

void seta(int);

void setaindirect(int);

};

void A::seta(int p) { a=p;}

void A::setaindirect(int q) { seta(q);}

void main(){

A a1;

a1.seta(10);

a1.setaindirect(20);

}

EXPLICIT ADDRESS MANIPULATION

• An application programmer can manipulate the member data of any object by explicit

address manipulation.

#include“Distance.h”

#include<iostream.h>

void main() {

Distance d1;

d1.setFeet(256);

d1.setInches(2.2);

char * p=(char *)&d1; //explicit address manipulation

*p=1; //undesirable but unpreventable

cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;

}

Output

257 2.2

OVERLOADED MEMBER FUNCTIONS

• Member functions can be overloaded just like non-member functions.

• Function overloading also enables us to have two functions of the
same name and same signature in two different classes.

• Without the facility of function overloading, choice of names for
member functions would become more and more restricted.

• Function overloading enables function overriding that, in turn, enables
dynamic polymorphism

FUNCTION OVERRIDING

class Base {
public:
virtual void DoSomething() {x = x + 5;}
private:
int x;

};

class Derived : public Base {
public:
virtual void DoSomething() {

y = y + 5;

Base::DoSomething();

}
private:
int y;

};

In C++, overriding is a concept

used in inheritance which

involves a base class

implementation of a method.

Then in a subclass, you would

make another implementation

of the method.

This is overriding. Here is a

simple example:

• Here you can see that the derived class overrides the base class

method DoSomething to have its own implementation where it adds to

its variable, and then invokes the parent version of the function by

calling Base::DoSomething() so that the x variable gets incremented

as well. The virtual keyword is used to that the class variable can figure

out which version of the method to call at runtime.

FUNCTION OVERRIDING CONTINUED …

OVERLOADING

Overloading is when you make multiple versions of a function. The compiler figures out
which function to call by either

1) The different parameters the function takes or
2) the return type of the function. If you use the same function declaration, then you will get
a compiler error because it will not know which function to use. Example.

class SomeClass{

public:

void SomeFunction(int &x) { x *= x; }

int SomeFunction(int x) { return x * x; }

};

// In main()

SomeClass s;

int x = 5;

x = SomeFunction(x); // Second method is called

DEFAULT VALUES FOR FORMAL ARGUMENTS OF MEMBER FUNCTIONS

• We already know that default values can be assigned to arguments of non-
member functions. Default values can be specified for formal arguments of
member functions also.

• Giving default values to arguments of overloaded member functions can lead
to ambiguity errors.

• If default values are specified for more than one formal argument, they must
be specified from the right to the left.

• Default values must be specified in the function prototypes and not in function
definitions.

• Default values can be specified for a formal argument of any type.

INLINE MEMBER FUNCTIONS

• Member functions are made inline by either of the following two
methods:

1. By defining the function within the class itself .

2. By only prototyping and not defining the function within the class.
• The function is defined outside the class by using the scope resolution operator.

• The definition is prefixed by the inline keyword.

• As in non-member functions, the definition of the inline function must
appear before it is called.

• The function should be defined in the same header file in which its class
is defined.

Member functions are made inline by either of the following two methods:

1. By defining the function within the class itself as given below
class A {

public:

void show() {/* definition of show inside the class */} //

};

2. By only prototyping and not defining the function within the class. The function is defined
outside the class by using the scope resolution operator. The definition is prefixed by the
inline keyword. The function should be defined in the same header file in which its class is
defined. Example:
class A {

public:

void show();

};

inline void A::show() { //definition in header file itself

//definition of A::show() function

}

CONSTANT MEMBER FUNCTIONS

• Member functions are specified as constants by suffixing the prototype and the function

definition header with the const keyword.

• For constant member functions, the memory occupied by the invoking object is a read-
only memory as the this pointer becomes ‘a constant pointer to a constant’ instead of only

‘a constant pointer’.

• Only constant member functions can be called with respect to constant objects. (here

‘this’ pointer becomes the ‘constant pointer to a constant’., i.e. ,for e.g., const Distance

*const)

• Non-constant member functions cannot be called with respect to constant objects.

• Constant as well as non-constant functions can be called with respect to non-constant

objects.

• It is possible to overload a function in such a way to have a const and non-const version of

the same function:

class Something {

public:

int value;

const int& GetValue() const { return value; }

int& GetValue() { return value; }

};

• The const version of the function will be called on any const objects, and the non-const

version will be called on any non-const objects. Example:

Something cSomething;

cSomething.GetValue(); // calls non-const GetValue();

const Something cSomething2;

cSomething2.GetValue(); // calls const GetValue();

CONSTANT MEMBER FUNCTIONS

CONSTANT MEMBER FUNCTIONS CONTINUED

• const (Constant) Objects

Specify that an object is not modifiable

Any attempt to modify the object is a syntax error

Example

//Declares a const object noon of class Time and initializes it to 12

const Time noon(12, 0, 0);

noon.setHour(11); // error

class Date {

private: int month, day; year;

Date() { } // private default constructor

public: Date(int m, int d, int y) { SetDate(m, d, y); }

void SetDate(int m, int d, int y) { month = m; day = d; year = y; }

int GetMonth() const { return month; }

int GetDay() const { return day; }

int GetYear() const { return year; }

};

The following is now valid code:

// although cDate is const, we can call const member functions

void PrintDate(const Date &cDate) {cout << cDate.GetMonth() << "/" <<cDate.GetDay()

<< "/" << cDate.GetYear() << endl; }

int main() {const Date cDate(10, 16, 2020); PrintDate(cDate); return 0;}

MUTABLE DATA MEMBERS

• A mutable data member is never constant.

• It can be modified inside constant functions also.

• Prefixing the declaration of a data member with the keyword mutable
makes it mutable.

• This is used when a data member is needed that can be modified
even for constant objects.

// Program to demonstrate Mutable data members

class A {

int x; //non-mutable data member

mutable int y; //mutable data member

public:

void abc() const { //a constant member function

x++; //ERROR: cannot modify a non-constant data

//member in a constant member function

y++; //OK: can modify a mutable data member in a constant member function

}

void def() { //a non-constant member function

x++; //OK: can modify a non-constant data member

//in a non-constant member function

y++; //OK: can modify a mutable data member in a non-constant member function

}

};

FRIENDS

• A class can have global non-member functions and member functions of

other classes as friends. Such functions can directly access the private data
members of objects of the class.

• A friend function is a non-member function that has special rights to access

private data members of any object of the class of whom it is a friend.

1. A friend function is prototyped within the definition of the class of which it is

intended to be a friend.

2. The prototype is prefixed with the keyword friend.

3. Since it is a non-member function, it is defined without using the scope resolution

operator.

4. It is not called with respect to an object.

FRIEND FUNCTIONS

• A few points about the friend functions are as follows:

1. friend keyword should appear in the prototype only and not in the definition.

2. Since it is a non-member function of the class of which it is a friend, it can be prototyped
in either the private or the public section of the class.

3. A friend function takes one extra parameter as compared to a member function that
performs the same task. This is because it cannot be called with respect to any object.
Instead, the object itself appears as an explicit parameter in the function call.

4. The scope resolution operator should not be used while defining a friend function.

There are situations where a function that needs to access the private data members of the
objects of a class, cannot be called with respect to an object of the class.

// A function friendly to two classes

class ABC;//Forward declaration

class XYZ {

int x;

public:

void setvalue(int i){ x=i;}

friend void max(XYZ,ABC);

};

class ABC {

int a;

public:

void setvalue(int i){a=i;}

friend void max(XYZ,ABC);

};

//definition of friend

void max(XYZ m, ABC n) {

if(m.x>=n.a)

cout<<m.x;

else

cout<<n.a;

}

void main() {

ABC abc;

abc.setvalue(10);

XYZ xyz;

xyz.setvalue(20);

max(xyz,abc);

}

Output 20

// Swapping private data of two classes

class class_2; // forward declaration

class class_1 {

int value_1;

public:

void indata(int a){Value_1=a;}

void display(void){cout<<value1<<endl;}

friend void exchange(class_1 &, class_2 &);

//passing objects by reference

};

class class_2 {

int value2;

public:

void indata(int a){value2=a;}

void display(void){ cout<<value2<<endl; }

friend void exchange(class_1 & , class_2 &);

};

void exchange(class_1 & x , class_2 & y){

int temp=x.value1;

x.value1=y.value2;

y.value2=temp;

}

void main() {

class_1 C1;

class_2 C2;

C1.indata(100);

C2.indata(200);

cout<<”value before exchange”;

C1.display();

C2.display();

exchange(C1,C2);

cout<<”value after exchange”;

C1.display();

C2.display();

}

FRIEND CLASSES

• A class can be a friend of another class. Member functions of a friend class
can access private data members of objects of the class of which it is a
friend.

Example1: Declaring class B as friend of class A

class A {

// all member functions of class B are friends of class A

friend class B;

………….

};

Example2:

class B;

class A {

int x;

public:

int getx();

// all member functions of B

//are friends of A

friend class B;

………….

};

class B {

A *ptr;

public:

void test_friend(int i);

};

void B::test_friend(int i) {

ptr->x=i;

}

FRIEND CLASSES

Properties of friendship

• Not symmetric (if B a friend of A, A not necessarily a friend of B)

• Not transitive (if A a friend of B, B a friend of C, A not necessarily a friend
of C)

• Friend Member Functions are used when one wants to make some
specific member functions of one class friendly to another class.

• Any problem of circular dependence is solved by forward declaration
i.e. forward declare a class that requires a friend.

Example3: friendship is not transitive

class B;

class C;

class A {

int x;

public:

int getx();

friend class B;

};

class B {

friend class C;

};

class C {

void fun(A *ptr){

ptr->x++; // C is not friend of A

}

};

FRIEND MEMBER FUNCTIONS

• Friend Member Functions are used when one wants to make some
specific member functions of one class friendly to another class.

Example 4:

• Member function of class B can be made friend of class A by
declaring within class A
• friend void B::test_friend();

FRIENDS AS BRIDGES

• Friend functions can be used as bridges between two classes.

• Suppose there are two unrelated classes whose private data
members need a simultaneous update through a common function.
This function should be declared as a friend to both the classes.

STATIC DATA MEMBERS

• Static data members hold global data that is common to all objects of the
class.

• Static data members are members of the class and not of any object of the
class, that is, they are not contained inside any object.

• Prefix the declaration of a variable within the class definition with the keyword
static to make it a static data member of the class.

• It is necessary to explicitly define a static data member outside the class to
avoid an error. A statement must be written to define (allocate memory for) a
static member variable.

• Making static data members private prevents any change from non-member
functions as only member functions can change the values of static data
members.

#include <iostream>

class item {

static int count;

int number;

public :

void getdata(int a) {

number =a;

count++;

}

void getcount(void) {

cout<“count:”<<count;

}

};

For example, it may be used

for a variable within a class

that can contain a counter

with the number of objects

of that class that have been

created, as in the following

example:

int item::count; //definition of static data member

void main() {

item a,b,c; // count is initialized to zero

a.getcount();//display count

b.getcount();

c.getcount();

a.getdata(100);

b.getdata(200);

c.getdata(300);

cout<<“after reading the data\n”;

a.getcount();

b.getcount();

c.getcount();

}

Output:

count: 0

count: 0

count: 0

After reading the data

count: 3

count: 3

count: 3

Note: Static members can be initialized in the program as:

int item::count;

The type and scope of each static data member must be defined outside the class

definition. This is because the static members are stored separately rather than as a part of

an object.

• Keyword const

Specify that an object is not modifiable

Any attempt to modify the object is a syntax error

• Example

const Time noon(12, 0, 0);

Declares a const object noon of class Time and initializes it

CONST (CONSTANT) OBJECTS AND CONST MEMBER FUNCTIONS

• const objects require const functions

• Member functions declared const cannot modify their object

• const must be specified in function prototype and definition

Prototype:
ReturnType FunctionName(param1,param2…) const;

Definition:
ReturnType FunctionName(param1,param2…) const { …}

CONST (CONSTANT) OBJECTS AND CONST MEMBER FUNCTIONS

Example:
int A::getValue() const

{

return privateDataMember

};

• Returns the value of a data member but doesn’t modify anything so is

declared const

• Constructors / Destructors cannot be const, They need to initialize variables

CONST (CONSTANT) OBJECTS AND CONST MEMBER FUNCTIONS

• Only constant member functions can be called with respect to constant

objects. (here ‘this’ pointer becomes the ‘constant pointer to a
constant’., i.e. ,for e.g., const Distance *const)

• Non-constant member functions cannot be called with respect to

constant objects.

• Constant as well as non-constant functions can be called with respect to

non-constant objects.

CONST (CONSTANT) OBJECTS AND CONST MEMBER FUNCTIONS

class Time {

public:

// set functions

void setTime(int, int, int); // set time

void setHour(int); // set hour

void setMinute(int); // set minute

void setSecond(int); // set second

// get functions (normally declared const)

int getHour() const; // return hour

int getMinute() const; // return minute

int getSecond() const; // return second

// print functions (normally declared const)

void printMilitary() const; // print military time

void printStandard(); // print standard time

private:

int hour; // 0 - 23

int minute; // 0 - 59

int second; // 0 - 59

};

void Time::setTime(int h, int m, int s) {

setHour(h);

setMinute(m);

setSecond(s);

}

// Set the hour value

void Time::setHour(int h){ hour = (h >= 0 && h < 24) ? h : 0; }

// Set the minute value

void Time::setMinute(int m) { minute = (m >= 0 && m < 60) ? m : 0; }

// Set the second value

void Time::setSecond(int s) { second = (s >= 0 && s < 60) ? s : 0; }

int Time::getHour() const { return hour; }

// Get the minute value

int Time::getMinute() const { return minute; }

// Get the second value

int Time::getSecond() const { return second; }

// Display military format time: HH:MM

void Time::printMilitary() const {

cout << (hour < 10 ? "0" : "") << hour << ":"<<

(minute < 10 ? "0" : "") << minute;

}

void Time::printStandard() { // should be const

cout << ((hour == 12) ? 12 : hour % 12) << ":" <<

(minute < 10 ? "0" : "")<< minute << ":" << (second < 10 ? "0" : "")

<< second << (hour < 12 ? " AM" : " PM");

}

int main() {

Time wakeUp(6, 45, 0); // non-constant object

const Time noon(12, 0, 0); // constant object

// MEMBER FUNCTION OBJECT

wakeUp.setHour(18); // non-const non-const

noon.setHour(12); // non-const const

wakeUp.getHour(); // const non-const

noon.getMinute(); // const const

noon.printMilitary(); // const const

noon.printStandard(); // non-const const

return 0;

}

CONST (CONSTANT) OBJECTS AND CONST MEMBER FUNCTIONS

Static member function

• This function’s sole purpose is to access and/or modify static data members of

the class.

• Prefixing the function prototype with the keyword static specifies it as a static

member.

• Static member functions can access only static data members of the class.

• A static member function can be called using the class name (instead of its

objects)as follows:

class name :: function-name;

#include <iostream>

class test {

int code;

static int count;

public:

void setcode (void){

code=++count;

}

void showcode(void){

cout <<”object no:”<<code<<endl;

}

static void showcount(void) {

cout<<“count:”<<count<<endl;}

};

int test::count;

int main() {

test t1,t2 ;

t1.setcode();

t2.setcode();

// accessing static functions

test::showcount();

test t3;

t3.setcode();

test::showcount();

t1.showcode();

t2.showcode();

t3.showcode();

}
Output:

Count : 2

Count : 3

Object no: 1

Object no: 2

Object no: 3

• Objects can appear as local variables inside functions.

• They can also be passed by value or by reference to functions.
• They can be returned by value or by reference from functions.

Objects and Functions

class complex {

float real;

float imag;

public :

void getdata(float x, float y) {real=x; imag=y;}

void display(void){ cout <<real<<“+i”<<imag<<endl; }

complex sum(complex);//declaration with objects as arguments

};

complex complex ::sum(complex x1) {

complex t;

t.real=real+x1.real;

t.imag=imag+xx.imag;

return t;

}

void main() {

complex C1,C2,C3;

C1.getdata(1.2,4.5);

C2.getdata(3.1,3.3);

C3=C1.sum(C2);

C1.display();

C2.display();

C3.display();

}

Output:

1.2i+4.5

3.1i+3.3

4.3i+7.8

class complex {

float real;

float imag;

public :

void getdata(float x, float y) {real=x;imag=y;}

void display(void) {cout <<real<<“+i”<<imag<<endl; }

void swap(complex &, complex &);

/ /declaration with objects as arguments

};

Passing objects using pass by reference

Passing objects as an argument using pass by reference method

Only address of the object is transferred to the function.

Example: Swap any two complex numbers

void complex::swap(complex &x1,complex &x2)

{ float temp =x1.real;

x1.real=x2.real;

x2.real=temp;

temp= x1.imag;

x1.imag=x2.imag;

x2.imag=temp;

}

void main() {

complex C1,C2,C3;

C1.getdata(1.2,4.5);

C2.getdata(3.1,3.3);

C3.swap(C1,C2);

C1.display();

C2.display();

}

Output:

3.1i+3.3

1.2i+4.5

Passing objects using pass by reference

// Returning object by reference

Complex & swap(complex &, complex &);
can be called as

Complex &c3= c1.swap(c1,c2);

1. Array of objects: Array of variables of the type class.

For example:
void main() {

complex C[10];

for (int i=0;i<10; i++)

C[i].getdata();

for (int i=0;i<10; i++)

C[i].display();

}

Objects and Arrays

Arrays inside objects

• An Array can be declared inside a class.

• Such an array becomes a member of all objects of the class.

It can be manipulated/accessed by all member functions of the class. example:

Objects and Arrays

define SIZE 5

class array

{

int a[SIZE];

public:

void setval(int, int);

int getval(int);

};

void array::setval(int p, int v) {

if (p>=SIZE)

return; // throw an exception

a[p]=v;

}

int array::getval(int p) {

if (p>=SIZE)

return -1; // throw an exception

else return a[p];

}

NAMESPACES

• The problem: When two variables (or functions etc.) in global scope have
the same identifier, we get a compile-time error.

• To avoid such name collisions, programmers need to use unique identifiers
in their own code.

• In C, if you use multiple third-party libraries and there is a name collision,
you have three choices:

1. Get the source code for the libraries and modify and recompile it

2. Ask one of the library publishers to rename their identifiers and republish the library

3. Decide not to use one of the libraries.

• Often, none of these options is available. To tackle this problem, C++
introduced namespaces.

NAMESPACES

• All identifiers declared within a defined block are associated with the block’s namespace
identifier.

• All references to these identifiers from outside the block must indicate the namespace
identifier.

• One example is the namespace std, in which Standard C++ defines its library’s identifiers, such
as the cout stream object.

• You can access objects in the namespace std in the following way using “::” operator or Or,
you can use the using namespace statement

#include <iostream>

int main(){

std::cout << “Hello World!”;

return 0;

}

#include <iostream>

using namespace std;

int main() {

cout << “Hello World!”;

return 0;

}

NAMESPACES

• This is how you define your own namespaces:

#include <iostream>

namespace MyNames {

int value1 = 10;

int value2 = 20;

int ComputeSum() {

return (value1 + value2);

}

}

int main(){

std::cout << MyNames::ComputeSum() << std::endl;

}

NAMESPACES

#include <iostream>

namespace MyNames

{

int value1 = 10;

int value2 = 20;

}

namespace MyOtherNames

{

int value1 = 30;

int value2 = 40;

}

using namespace std;

using namespace MyNames;

using namespace MyOtherNames;

int main()

{

value1 = 50;

cout<<value1;

}

• If you use multiple using namespace statements, you may get a compile-
time error due to ambiguity:

NAMESPACES

• You can also define nested namespaces:

#include <iostream>

namespace MyNames {

int value1 = 10;

int value2 = 20;

namespace MyInnerNames {

int value3 = 30;

}

}

int main() {

std::cout << MyNames::value1 << std::endl;

std::cout << MyNames::MyInnerNames::value3 << std::endl;

}

NAMESPACES

• Problem: Some namespaces have long names. Qualifying the name of a class that is
enclosed within such a namespace, with the name of the namespace, is cumbersome.

namespace a_very_very_long_name {

int value3;

}

//Using namespace a_very_very_long_name;

void main() {

std::cout<<a_very_very_long_name ::value3 << std::endl;

}

• Solution: Assigning a short alias to such a long namespace name solves the problem.

namespace x=a_very_very_long_name ; //declaring alias

void main(){

std::cout<<x::value3 << std::endl;

}

NESTED CLASSES

• A class can be defined inside another class. Such a class is known as a nested class.

• The class that contains the nested class is known as the enclosing class.

• Nested classes can be defined in the private, protected, or public portions of the
enclosing class.

Example1

class A {

class B {

/* definition of class B*/

};

/* definition of class A*/

};

NESTED CLASSES

• A nested class is created if it does not have any relevance outside its enclosing class. By
defining the class as a nested class, we avoid a name collision.

• The size of objects of an enclosing class is not affected by the presence of nested classes.

Example2:
class A {

int x;

Public:

class B {

int y;

};

};

void main() {

cout << sizeof(int)<<“\t”<<sizeof(A)<<endl;

}

Output: 4 4

NESTED CLASSES

• Member functions of a nested class can be defined outside the definition of the enclosing class

by prefixing the function name with the name of the enclosing class followed by the scope

resolution operator. This, in turn, is followed by the name of the nested class followed again by

the scope resolution operator.

Example3: class A {

public:

class B {

public:

void Btest();

};

};

void A::B::Btest() {

/* definition */
}

NESTED CLASSES

• A nested class may be only prototypes within its enclosing class and defied later.

• The name of the enclosing class followed by the scope resolution operator is required

Example3:

class A {

class B; //prototype only

};

class A::B {

// class definition

};

• The objects of the nested class are defined outside the member functions of the enclosing
class as:

A::B B1; //will compile only if class B is defined within the public section of class A.

NESTED CLASSES

• An object of the nested class can be used in any of the member functions of the enclosing
class without the scope resolution operator.

• Object of the nested class can be a member of the enclosing class. And only the public
members of the object can be accessed.

Example3: class A {

class B {

public:

void Btest();

};

B B1;

public:

void Atest();

};

void A::Atest() {

B1.Btest();

B B2; B2.Btest();

}

NESTED CLASSES

• Member functions of the nested class can access the non-static members of the enclosing
class through an object, a pointer or a reference only

Example3: class A {

Public:

void Atest();

class B {

public:

void Btest1(A &);

void Btest2();

};

};

void A::B::Btest1(A & Aref) { Aref.Atest(); //ok }

void A::B::Btest2() { Atest(); //Error }

CHAPTER 4
CONSTRUCTORS AND DESTRUCTORS

CONSTRUCTORS AND DESTRUCTORS

• Constructors – introduction and features

• The zero-argument constructor

• Parameterized constructors

• Creating a parameterized constructor for the class String

• Explicit constructors

• Copy constructor

• Destructors

CONSTRUCTORS

• The constructor gets called automatically for each object that has just got created.

• It appears as member function of each class, whether it is defined or not.

• It has the same name as that of the class.

• It may or may not take parameters.

• It does not return anything (not even void).

• Constructors fulfill the need for a function that guarantees initialization of member data of a class.

• Domain constraints on the values of data members can also be implemented via constructors.

• The constructor gets called automatically for each object when it is created.

• The prototype of a constructor is <class name> (<parameter list>);

Example1:

class A { /* class definition*/ };

void main() { A A1; }

• Constructors do not actually allocate memory for objects. They are member functions that are

called for each object immediately after memory has been allocated for the object.

Example 2:

class A {

int x;

public:

void setx(int);

int getx();

};

void main() { A A1; // object declared }

• The statement in main is transformed to

A A1; // 4 bytes of memory is allocated for the object

A1.A();// constructor is called implicitly by the compiler

• It is forbidden to call the constructor explicitly for an existing object.

CONSTRUCTORS

CONSTRUCTOR

Example 3:

1. Before (without constructor):

class A { /* class definition*/ };

2. After (with constructor):

class A {

public:

A(); //prototype inserted implicitly by the compiler

};

A::A() {

// empty definition inserted implicitly by the compiler

}

THE ZERO-ARGUMENT CONSTRUCTOR

• The constructor is a non-static member function.

• It is called for an object. It, therefore, takes the this pointer as a leading
formal argument.

• The address of the invoking object is passed as a leading parameter to
the constructor call.

• This means that the members of the invoking object can be accessed
from within the definition of the constructor.

• The constructor gets called for each object when the object is created.

THE ZERO-ARGUMENT CONSTRUCTOR

• The constructor that does not take any arguments and is called the zero-argument constructor.

Example 4:
class A {

int x;

public:

A(); //our own constructor

void setx(int);

int getx();

};

A::A() { cout<<“ constructor of class A called\t”; }

void main() {

A A1;

cout<<“program ends\n”;

}

Output : constructor of class A called program ends

THE ZERO-ARGUMENT CONSTRUCTOR

• A user-defined constructor implements domain constraints on the data members of a class.

Example 5:

class distance {

int inch;

int feet;

public:

distance(); //our own constructor

/* rest of the class definition*/

};

distance::distance() { inch=0; feet=0; }

void main() {

distance d1;

cout<<d1.getfeet()<<“\t“<<d1.getinch();

}

Output : 0 0

THE ZERO-ARGUMENT CONSTRUCTOR

• The constructor provided by default by the compiler also does not take any arguments.

• The terms ‘zero-argument constructor’ and ‘default constructor’ are used
interchangeably.

Running example of class String

• It will have two data members. Both these data members will be private.

• The first data member will be a character pointer. It will point at a dynamically allocated
block of memory that contains the actual character array.

• The other data member will be a long unsigned integer that will contain the length of this
character array.

THE ZERO-ARGUMENT CONSTRUCTOR

Example 6

THE ZERO-ARGUMENT CONSTRUCTOR

• Suppose ‘S1’ is an object of the class String and string ‘abc’ has been assigned to it. The address
of the first byte of the memory block containing the string is stored in the ‘cStr’ portion of ‘S1’.

45 1001

cStr

len

S1

Figure: Memory layout of an object of the class ‘String’

The following two conditions should be implemented on all objects of the class String.

• ‘cStr’ should either point at a dynamically allocated block of memory exclusively allocated for it
(i.e., no other pointer should point at the block of memory being pointed at by ‘cStr’) or ‘

• cStr’ should be NULL.

1001

3

a b c \0

THE ZERO-ARGUMENT CONSTRUCTOR

• When an object of the class ‘String’ is created , the ‘cStr ‘ portion of the object should be initially
set to NULL (and ‘len’ should be set to 0)

• The prototype and the definition of the constructor are as shown in example 7

Example 7:
class String {

char *Cstr;

unsigned int len;

public:

String(); //our own constructor

/* rest of the class definition*/

};

String::String() {

Cstr=NULL;

len=0;

}

void main() { String S1; }

PARAMETERIZED CONSTRUCTORS

• Constructors take arguments and can, therefore, be overloaded.

• A user-defined parameterized constructor can also be called by creating an object in the heap.

• The parameterized constructor is prototyped and defined just like any other member function except for the fact
that it does not return any value.

• If the parameterized constructor is provided and the zero-argument constructor is not provided, the compiler will not
provide the default constructor.

• Default values given to parameters of a parameterized constructor make the zero- argument constructor
unnecessary.

Example 8:

class distance {

int inch;

int feet;

public:

distance(int=0, int=0); //default values given

/* rest of the class definition*/

};

distance D1; //assigns inch and feet of D1 with 0, no need of zero argument constructor

PARAMETERIZED CONSTRUCTORS

Example 9

class String {

char *Cstr;

unsigned int len;

public:

String(); //our own constructor

String (char * P);

char * getstring() { return Cstr;}

/* rest of the class definition*/

};

String::String() {

Cstr=NULL;

len=0;

}

String::String(char *str) {

len= strlen(str);

Cstr=new char[len+1];

strcpy(Cstr,str);

}

void main() {

String S1;

}

PARAMETERIZED CONSTRUCTORS

• Here, a value is assigned for the argument of the parameterized constructor.

• The constructor would handle the following statements:

1. String s1(“abc”);

OR

2. char * cPtr = “abc”;

String s1(cPtr);

OR

3. char cArr[10] = “abc”;

String s1(cArr);

• In each of these statements, we are essentially passing the base address of the memory block in
which the string itself is stored to the constructor.

COPY CONSTRUCTOR

• The copy constructor is a special type of parameterized constructor which copies one object to another.

• It is called when an object is created and equated to an existing object at the same time.

• The copy constructor is called for the object being created. The pre existing object is passed as a
parameter to it.

• The copy constructor member-wise copies the object passed as a parameter to it into the object for which
it is called.

• If the copy constructor for a class is not defined, the compiler defines it for us. But in either case, it is called
under the following three circumstances:

1. When an object is created and simultaneously equated to another existing object, the copy
constructor is called for the object being created. The object to which this object was equated is
passed as a parameter to the copy constructor.

Example 10:

A A1;

A A2=A1; //copy constructor called

or

A A2(A1)

or

A *ptr = new A(A1);

COPY CONSTRUCTOR

2. When an object is created as a non-reference formal argument of a function. The copy constructor
is called for the argument object. The object passed as a parameter to the function is passed as a
parameter to the copy constructor.

Example 11:

void abc(A);

A A1;

abc(A1); //copy constructor called

void abc(A A2) {

// definition of abc()

}

COPY CONSTRUCTOR

3. When an object is created and simultaneously equated to a call to a function that returns an
object. The copy constructor is called for the object that is equated to the function call. The
object returned from the function is passed as a parameter to the constructor.

Example 12:

A abc()

{

A A1;

//remaining definition of abc

return A1;

}

A A2=abc(); //copy constructor called

COPY CONSTRUCTOR

• Default copy constructor is defined by the compiler . Here the formal parameter is a reference, due
to this no separate memory is allocated

• The prototype and the definition of the default copy constructor defined by the compiler are as
follows: Example 13:

Class A {

public:

A (A&); //default copy constructor

};

A::A(A & Aobj) {

*this=Aobj;

}

Now the statement:

A A2=A1;

is converted as follows:

A A2;

A2.A(A1); //copy constructor is called for A2

COPY CONSTRUCTOR

class String {

char *Cstr;

unsigned int len;

public:

String(String &); //our own copy constructor

/* rest of the class definition*/

};

String::String(String &ss) {

if (ss.CStr==NULL) {

Cstr=NULL; len=0;

} else {

len= strlen(ss.str);

Cstr=new char[len+1]; //dynamically allocate a separate memory block and copy

strcpy(Cstr, ss.Cstr);

}

}

void main() {

String S1(“abc”); String s2=s1;

}

Example 14

DESTRUCTOR

• This function is the opposite of the constructor in the sense that it is invoked when an

object ceases to exist. The definition of a destructor must obey the following rules:

• The destructor has the same name as the class but its name is prefixed by a tilde(~).

• The destructor has no arguments and no a return value.

• Destructors cannot be overloaded.

The destructor for the class Person is thus declared as follows:

class Person {

public:

Person(); // constructor

~Person(); // destructor

};

The position of the constructor(s) and destructor in the class definition is dictated by

following convention:

• First the constructors are declared, then the destructor, and only then other members are

declared.

• The main task of a destructor is to make sure that memory allocated by the object (e.g.,

by its constructor) is properly deleted when the object goes out of scope.

THE DESTRUCTOR

int count=0;

class alpha {

alpha(){

count++;

cout<<”no of objects created ”<<count;

}

~alpha() {

cout<<”no of objects destroyed ”<<count;

count--;

}

};

void main() {

cout<< “enter main”

alpha A1,A2,A3,A4;

{

cout<<”Enter block1”

alpha A5;

}

cout<<”Re enter main”;

}

IMPLEMENTATION OF DESTRUCTOR

Output

Enter main

No of obj created 1

No of obj created 2

No of obj created 3

No of obj created 4

Enter block1

No of objects created 5

No of objects destroyed 5

Re enter main

No of objects destroyed 4

No of objects destroyed 3

No of objects destroyed 2

No of objects destroyed 1

Example 14
class String

{

char *Cstr;

unsigned int len;

public:

~String(); //our own destructor

/* rest of the class definition*/

};

String::~String()

{

if (Cstr!=NULL)

delete [] Cstr; //if memory exists destroy it

}

• Let s1 be an object of class String. If s1.Cstr is dynamically allocated in the heap area. After s1

gets destroyed, this memory block remains allocated as a locked up lost resource. This allocated

memory, could be deallocated using delete operator.

IMPLEMENTATION OF DESTRUCTOR

THANK YOU!

