Module IV

Event Handling

Dr. Zahid Ansari

What is Delegation Event Model?

= The Delegation Event Model

= Model used by Java to handle user interaction
with GUI components

= Describes how your program can respond to
user interaction

m Three important players
= Event Source
= Event Listener/Handler
= Event Object

Event Source, Event Listener/Handler

m Event Source
= GUI component that generates the event
= Example: button

m Event Listener/Handler
= Receives and handles events
= Contains business logic

= Example: displaying information useful to the
user, computing a value

gt
Event Object

m Created when an event occurs (l.e., user
Interacts with a GUI component)

m Contains all necessary information about
the event that has occurred
= Type of event that has occurred
= Source of the event

m Represented by an Event class

" S
Event Listener Registers to Event
Source

m Alistener should be registered with a source

m Once regqistered, listener waits until an event
OCCUrs

= \When an event occurs
= An event object created by the event source

= Event object is fired by the event source to the
registered listeners (method of event listener is called
with an event object as a parameter)

m Once the listener receives an event object from
the source
= Deciphers the event
= Processes the event that occurred.

Control Flow of Delegation Event Model

EVENT
SOURCE O, e

Registers
Flres an
Event
ObJect

Listener

EVENT
LISTENER

@ l Reacts to

the Event

Methods of Event Source Used by Event
Listeners for Registation

m Event source registering a listener:
void add<Type>Listener(<Type>Listener listnerObj)

= where,
m <Type> depends on the type of event source

m Can be Key, Mouse, Focus, Component, Action
and others

® One event source can register several listeners

m Registered listener being unregistered:
void remove<Type>Listener(<Type>Listener listnerObj)

gt

Event Classes

Event Class

Description

ComponentEvent

Extends AWTEvent. Instantiated when a component is moved,
resized, made visible or hidden.

InputEvent

Extends ComponentEvent. The abstract root event class for all
component-level input event classes.

ActionEvent

Extends AWTEvent. Instantiated when a button is pressed, a list item
is double-clicked, or a menu item is selected.

ItemEvent Extends AWTEvent. Instantiated when an item is selected or
deselected by the user, such as in a list or a checkbox.

KeyEvent Extends InputEvent. Instantiated when a key is pressed, released or
typed.

MouseEvent Extends InputEvent. Instantiated when a mouse button is pressed,
released, or clicked (pressed and released), or when a mouse cursor
enteres or exits a visible part of a component.

TextEvent Extends AWTEvent. Instantiated when the value of a text field or a

text area is changed.

WindowEvent

Extends ComponentEvent. Instantiated when a Window object is
opened, closed, activated, deactivated, iconified, deiconified, or when
focus is transferred into or out of the window.

gt
Event Listeners
m Classes that implement the <Type>Listener

Interfaces
Event Listeners Description
ActionListener Receives action events.
MouseListener Receives mouse events,

MouseMotionListener |Receives mouse motion events, which include dragging and
moving the mouse,

WindowListener Receives window events.

gt

MouseListener Methods

Mouselistener Methods

public void mouzeClicked (MouseEvent e)

Contains the handler for the event when the mouse is clicked (i.e., pressed and
released).

public void mouzeEntered (MouseEvent e)

Contains the code for handling the case wherein the mouse enters a component.

public void mouseExited (MouseEvent e)

Contains the code for handling the case wherein the mouse exits a component.

public vold mousePressed (MouseEvent e)

Invoked when the mouse button is pressed on a component.

public vold mouseReleased (MouseEvent e)

Invoked when the mouse button is released on a component.,

10

gt

MouseMotionListener Methods

Mouselistener Methods

public vold mouseDragged (MouseEvent e)

Contains the code for handling the case wherein the mouse button is pressed on a
component and dragged. Called several times as the mouse is dragged.

public void mouseMoved (MouseEvent e)

Contains the code for handling the case wherein the mouse cursor is moved onto a
component, without the mouse button being pressed. Called multiple times as the
mouse is moved.

11

gt

WindowListener Methods\

Windowlistener Methods

public void windowOpened (WindowEwvent e)

Contains the code for handling the case when the Window object is opened (i.e., made
visible for the first time).

public void windowClosing (WindowEwvent e)

Contains the code for handling the case when the user attempts to close Window object
from the object's system menu.

public void windowClosed (WindowEwvent e)

Contains the code for handling the case when the Window object was closed after
calling dispose (i.e., release of resources used by the source) on the object.

public void windowhActivated (WindowEvent e)

Invoked when a Window object is the active window (i.e., the window in use).

public void windowDeactivated (WindowEwvent e)

Invoked when a Window object is no longer the active window.

public void windowIconified (WindowEvent e]

Called when a Window object is minimized.

public void windowDeiconified (WindowEwvent e)

Called when a Window object reverts from a minimized to a normal state.

12

Example: Mouse Event Handler

Import java.awt.*;
Import java.awt.event.*;
import java.applet.*;

public class MouseEvents extends Applet
iImplements MouseListener, MouseMotionListener {
String msg ="";
int mouseX =0, mouseY =0; // coordinates of mouse
public void init() {
addMouseListener(this);
addMouseMotionListener(this);
}
// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
/[save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse clicked.";
repaint();

13

Example: Mouse Event Handler

// Handle mouse entered.
public void mouseEntered(MouseEvent me) {
/[save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse entered.";
repaint();
}

/l Handle mouse exited.
public void mouseExited(MouseEvent me) {
/] save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse exited.";
repaint();
}

14

Example: Mouse Event Handler

// Handle button pressed.
public void mousePressed(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Down’;
repaint();
}

// Handle button released.
public void mouseReleased(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Up";
repaint();

15

Example: Mouse Event Handler

// Handle mouse dragged.
public void mouseDragged(MouseEvent me) {
/[save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "*";
showStatus("Dragging mouse at " + mouseX +", " + mouseY);
repaint();

}

/[Handle mouse moved.
public void mouseMoved(MouseEvent me) {
I/l show status
showStatus("Moving mouse at " + me.getX() +", " + me.getY());

}

/[Display msg in applet window at current X,Y location.
public void paint(Graphics g) {
g.drawString(msg, mouseX, mouseY);
}
}

16

Example: Simple Key Handler

/[Demonstrate the key event handlers.

import java.awt.*,

iImport java.awt.event.”*;

iImport java.applet.*;

/*
<applet code="SimpleKey" width=300 height=100>
</applet>

*/

public class SimpleKey extends Applet
implements KeyListener {

String msg ="";
int X =10, Y = 20; // output coordinates

public void init() {
addKeyListener(this);
}

17

Example: Simple Key Handler

public void keyPressed(KeyEvent ke) {
showStatus("Key Down");

}

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();
repaint();

}

I/l Display keystrokes.
public void paint(Graphics g) {
g.drawString(msg, X, Y);
}
}

18

Example: Key Event Handler

/[Demonstrate some virutal key codes.

import java.awt.*,

iImport java.awt.event.”*;

iImport java.applet.*;

/*
<applet code="KeyEvents" width=300 height=100>
</applet>

*/

public class KeyEvents extends Applet
implements KeyListener {

String msg ="";
int X =10, Y = 20; // output coordinates

public void init() {
addKeyListener(this);
}

19

Example: Key Event Handler

public void keyPressed(KeyEvent ke) {
showStatus("Key Down");
int key = ke.getKeyCode();
switch(key) {
case KeyEvent.VK_F1:
msg +="<F1>"; break;
case KeyEvent.VK_F2:
msg += "<F2>"; break;
case KeyEvent.VK_F3:
msg +="<F3>"; break;
case KeyEkEvent.VK_PAGE_DOWN:
msg += "<PgDn>"; break;
case KeyEvent.VK_PAGE_UP:
msg += "<PgUp>"; break;
case KeyEvent.VK_LEFT:
msg += "<Left Arrow>"; break;
case KeyEvent.VK_RIGHT:
msg += "<Right Arrow>"; break;
}
repaint();

}

20

Example: Key Event Handler

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();
repaint();

}

I/ Display keystrokes.
public void paint(Graphics g) {
g.drawString(msg, X, Y);
}
}

21

"
Adapter Classes
= Why use Adapter classes?

= Implementing all methods of an interface
takes a lot of work

= Interested in iImplementing some methods of
the interface only

m Adapter classes
= Built-in in Java

= Implement all methods of each listener
Interface with more than one method

* Implementations of the methods are all empty

22

Example: Mouse Adapter

// Demonstrate an adaptor.

Import java.awt.*;

Import java.awt.event.*;

Import java.applet.*;

/*
<applet code="AdapterDemo" width=300 height=100>
</applet>

*/

public class AdapterDemo extends Applet {
public void init() {
addMouseListener(new MyMouseAdapter(this));
addMouseMotionListener(new MyMouseMotionAdapter(this));

23

S

Example: Mouse Adapter

class MyMouseAdapter extends MouseAdapter {

}

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {
adapterDemo.showStatus("Mouse clicked");

}

class MyMouseMotionAdapter extends MouseMotionAdapter {

}

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {
adapterDemo.showStatus("Mouse dragged");

}

24

S

Inner Classes

m Class declared within another class

= Why use inner classes?
= Help simplify your programs
= Especially in event handling

25

Example: Without Inner Class

I/l This applet does NOT use an inner class.
Import java.applet.*;
Import java.awt.event.*;

public class MousePressedDemo extends Applet {
public void init() {

addMouseListener(new MyMouseAdapter(this));
}
}

class MyMouseAdapter extends MouseAdapter {
MousePressedDemo mousePressedDemo:;

public MyMouseAdapter(MousePressedDemo mousePressedDemo) {
this.mousePressedDemo = mousePressedDemo;
}

public void mousePressed(MouseEvent me) {
mousePressedDemo.showStatus("Mouse Pressed.");
}

26

Example: Using Inner Class

/[Inner class demo

import java.applet.*;

iImport java.awt.event.”*;

/*
<applet code="InnerClassDemo" width=200 height=100>
</applet>

*/

public class InnerClassDemo extends Applet {
public void init() {
addMouseListener(new MyMouseAdapter());
}

class MyMouseAdapter extends MouseAdapter {
public void mousePressed(MouseEvent me) {
showStatus("Mouse Pressed");
}

27

S

Anonymous Inner Classes

m Unnamed inner classes

= Why use anonymous inner classes?
= Further simplify your codes
= Especially in event handling

28

S
Example: Anonymous Inner Class

/[Anonymous inner class demo.

import java.applet.*;

iImport java.awt.event.”*;

/*
<applet code="AnonymousinnerClassDemo" width=200 height=100>
</applet>

*/

public class AnonymousinnerClassDemo extends Applet {
public void init() {
addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent me) {
showStatus("Mouse Pressed");
}

D;

29

