
P. A. EDUCATIONAL TRUST’S (PAET)

P.A. COLLEGE OF ENGINEERING
MANGALURU -574153 , KARNATAKA (INDIA)

www.pace.edu.in

Approved by A.I.C.T.E. New Delhi, Recognized by Government of Karnataka,

Affiliated to Visvesvarya Technological University, Belagavi INDIA

OBJECT ORIENTED CONCEPTS

IV SEMESTER 2018-19

DR. ZAHID ANSARI

Module II
Introduction to Java
Text: Java - The Complete Reference by Herbert Schildt, 7th Edition,

Tata McGraw Hill, 2007. (Chapters 1-5)

3

OVERVIEW

• Java Introduction

• Java’s magic: the Byte code

• Java Development Kit (JDK)

• Java Buzzwords

• Object-oriented programming

• Simple Java programs

• Data types

• variables and arrays

• Operators

• Control Statements

WHY JAVA IS IMPORTANT

• Two reasons

• Trouble with C/C++ language is that they are not portable and are
not platform independent languages.

• Emergence of World Wide Web, which demanded portable
programs

• Portability and security necessitated the invention of Java

5

JAVA ORIGIN

• Many Java features are inherited from the earlier languages:

B → C → C++ → Java
• From C, Java derives its syntax
• Many of Java’s object-oriented features were influenced by C++

• Designed by James Gosling et. al of Sun Microsystems in 1991.
• Initially called Oak, in honor of the tree outside Gosling's window, its name

was changed to Java because there was already a language called Oak.

MOTIVATION

• The primary motivation was the need for a platform-independent (that is,
architecture-neutral) language to create software for consumer electronic
devices, such as microwave ovens and remote controls.

• About the same time, World Wide Web was emerging.

• This realization caused the focus of Java to switch from consumer electronics
to Internet programming.

JAVA LANGUAGE FEATURES
JAVA BUZZWORDS

• Simple
• Secure
• Portable
• Object-oriented
• Robust
• Multithreaded
• Architecture-neutral
• Interpreted
• High performance
• Distributed
• Dynamic

SIMPLE

• Java is designed to be easy for the professional programmer to
learn and use.

• Java omits many rarely used, poorly understood, confusing
features of C++. Say : No Pointer! No dynamic delete.

• Automatic garbage collection
• Rich pre-defined class library

• Similar to C/C++ and it makes an effort not to have surprising
features

OBJECT ORIENTED

• The object model in Java is simple and easy to extend
• simple types, such as integers are kept as high-performance non-objects

• Focus on the data (objects) and methods manipulating the data

• All functions are associated with objects

• Almost all data types are objects (files, strings, etc.)

• Potentially better code organization and reuse

SECURE

• Since Java is used in networked environment, it requires more security.

• Code security is attained in Java through the implementation of its Java
Runtime Environment (JRE)

• Programs are confined to the JRE and cannot access other parts of the
computer

• Memory layout of the executable is determined during run time to add
protection against unauthorized access to restricted areas of the code

11

ROBUST

• Restricts the programmer to find the mistakes early

• performs compile-time (strong type checking)

• run-time (exception-handling) checks

• Manages memory automatically

• Java uses “a inner safe pointer- model”,

• It eliminates the possibility of overwriting memory and corrupting
data, so programmers feel very safe in coding.

WHY JAVA IS ROBUST?

• Consider two of the main reasons for program failure:

• memory management mistakes and

• mishandled exceptional conditions (that is, run-time errors)

• Memory management is a difficult and tedious. In C/C++, the

programmer must manually allocate and free all dynamic memory

• Programmers will either forget to free memory that has been

previously allocated or, worse, try to free some memory that another

part of their code is still using

• Java virtually eliminates these problems by managing memory

allocation and deallocation for you

• Java provides object-oriented exception handling

MULTITHREADED

• Java supports multithreaded programming, which allows you to
write programs that do many things simultaneously

• Multiple concurrent threads of executions can run simultaneously
• Java run-time system provides mechaniosm for multithread

synchronization that enables you to construct smoothly running
interactive systems

• Uses a set of synchronization primitives (based on monitors and
condition variables paradigm) to achieve this.

PLATFORM INDEPENDENT /
ARCHITECTURE-NEUTRAL /

PORTABLE

• Operating system upgrades, processor upgrades, and changes in core
system resources can all combine to make a program malfunction

• The goal of Java language creation was “write once; run anywhere, any
time, forever.”

• Java Virtual Machine provides a platform independent environment for
the execution of Java bytecode

• Same application runs on all platforms

• The sizes of the primitive data types are always the same

• The libraries define portable interfaces

INTERPRETED AND HIGH
PERFORMANCE

• Java enables the creation of cross-platform programs by compiling into
an intermediate representation called Java bytecode

• Java bytecode can be interpreted on any system that provides a Java
Virtual Machine (JVM)

• Bytecode can be also translated into the native machine code for
better efficiency

• The Java bytecode is translated directly into native machine code
using a just-in-time (JIT) compiler to achieve high performance

DISTRIBUTED

• Java is extensively used for Network applications and WEB projects

• Java is designed for the distributed environment of Internet, because
• it handles TCP/IP protocols to access a resource through its URL

• Java can access “objects” across the Net via URLs e.g.

“http//:gamut.neiu.edu/~ylei/home.html”, with the same ease as

when accessing a local file system

• Remote Method Invocation (RMI) feature of Java simplifies the

client/server programming

DYNAMIC

• Java programs carry with them a substantial amounts of run-time type
information to verify and resolve accesses to objects at run time.

• This makes it possible to dynamically link code in a safe manner

• Class type of an object can be checked at runtime

• Small fragments of bytecode may be dynamically updated on a
running system

• Libraries can freely add new methods and instance variables without
any effect on their clients

18

JAVA PROGRAM EXECUTION

• Java programs are both compiled and interpreted

• Steps
- write the Java program

- compile the program into bytecode

- execute (interpret) the bytecode on the computer through the Java
Virtual Machine (JVM)

• Compilation happens once.

• Interpretation occurs each time the program is executed.

19

JAVA IS COMPILED AND INTERPRETED

Text Editor Compiler Interpreter

Programmer

Source Code

.java file

Byte Code

.class file

Hardware and
Operating System

Notepad,
emacs,vi

javac java
appletviewer
netscape

August 6, 2009

JAVA’S MAGIC: THE BYTECODE

• The output of a Java compiler is not executable code, rather, it is bytecode

• Bytecode is a highly optimized set of instructions designed to be executed by
the Java run-time system called Java Virtual Machine (JVM).

• Bytecode generated after compiling in Mac, Windows, Linux or Unix will be
same. Bytecode is Independent of any particular computer hardware, so any
computer with a JVM can execute the compiled Java program, no matter
what type of computer, the program was compiled on

• Since Bytecode compiled in one platform can be executed into another
platform, Translating a Java program into bytecode helps makes it much easier
to run a program in a wide variety of environments. (only the JVM needs to be
implemented for each platform)

23

JAVA VIRTUAL MACHINE (JVM)

• Java Virtual Machine (JVM) is An imaginary machine that is implemented by

emulating software on a real machine

• It provides the hardware platform specifications to which you compile all Java

technology code

• Java Virtual Machine is an interpreter for bytecode

• To run a program in a wide variety of environments, only the JVM needs to be

implemented for each platform

• When a program is interpreted, it generally runs substantially slower than it would

run if compiled to executable code
• The Java bytecode is translated directly into native machine code at run time on

demand using a just-in-time (JIT) compiler to achieve high performance

JUST IN TIME (JIT) COMPILER FOR BYTECODE

• Sun supplies its Just In Time (JIT) compiler for bytecode, which is

included in the Java 2 release

• When JIT compiler is part of the JVM, it compiles bytecode into

executable code in real time, on a piece-by-piece, demand basis

25

HOW IT WORKS!

Run-time EnvironmentCompile-time

Environment

Java
Bytecodes

move locally
or through
network

Java
Source
(.java)

Java
Compiler

Java
Bytecod

e
(.class)

Java

Interpreter

Just in
Time

Compiler

Runtime System

Class
Loader

Bytecode
Verifier

Java
Class

Libraries

Operating System

Hardware

Java
Virtual
machine

• Java is independent only for

one reason:

- Only depends on the Java

Virtual Machine (JVM),

- Code is compiled to bytecode,

which is interpreted by the

resident JVM

- JIT (just in time) compilers

attempt to increase speed.

26

PLATFORM INDEPENDENCE

JAVA COMPILER

JAVA BYTE CODE

JAVA INTERPRETER

Windows 95 Macintosh Solaris Windows NT

(translator)

(same for all platforms)

(one for each different system)

27

JAVA DEVELOPMENT KIT (JDK)

• JDK consists of the Java Compiler and related development tools

which enable users to create applications in Java.

• JRE is the Java Runtime Environment. i.e., the JRE is an implementation

of the Java Virtual Machine which actually executes Java programs.

• Typically, each JDK contains one (or more) JRE's along with the various

development tools like the Java source compilers, bundling and

deployment tools, debuggers, development libraries, etc.

• JDK = JRE + Java Development Tools + Libraries

JAVA DEVELOPMENT KIT (JDK)

29

JDK TOOLS

• Some of the tools provided by JDK are:

javac the Java compiler

java VM for running stand-alone Java applications

appletviewer a utility to view applets

javadoc HTML generator from Java source code

jdb a rudimentary Java debugger

javah Header file generator for interlanguage linking

javap A disassembler

30

JAVA TECHNOLOGIES

• Different technologies depending on the target applications

1) Desktop applications - Java 2 Standard Edition (J2SE)

2) Enterprise applications – Java 2 Enterprise Edition (J2EE)

3) Mobile applications – Java 2 Mobile Edition (J2ME)

4) Smart Card applications – JavaCard

• Each edition puts together a large collections of packages offering

functionality needed and relevant to a given application.

• The Java Virtual Machine remains essentially the same.

31

JAVA PROGRAM TYPES

• Applications: standalone (desktop) Java programs, executed from the

command line, only need the Java Virtual Machine to run

• Applets: Java program that runs within a Java-enabled browser, invoked

through a “applet” reference on a web page, dynamically downloaded

to the client computer. It can be transmitted over the internet.

• Servlets: Java program running on the web server, capable of responding

to HTTP requests made through the network etc.

August 6, 2009

An Overview of Java

August 6, 2009

JAVA – OBJECT ORIENTED

• Computer programs consist of two elements: code and data.

• Some programs are organized around its code i.e. “what is happening”.

This approach is called the Process-oriented model: The process-oriented

model can be thought of as code acting on data

• Other programs are organized around its data i.e. “who is being

affected.” This approach is called Object-oriented programming

• Object-oriented programming organizes a program around its data

(objects) and a set of well-defined interfaces to that data: characterized

as data controlling access to the code

• Object-oriented programming is at the core of Java

August 6, 2009

OOP PRINCIPLES: ENCAPSULATION

• Encapsulation - is the mechanism that binds together code and the data it manipulates, and keeps

both safe from outside interference and misuse – class, member variables and methods

August 6, 2009

OOP PRINCIPLES: INHERITANCE

• Inheritance - the process by which one object acquires the properties of another object

August 6, 2009

OOP PRINCIPLES: POLYMORPHISM

• Polymorphism - is a feature that allows one interface to be used for a
general class of actions – “one interface , multiple methods”

• Polymorphism, encapsulation and inheritance works together - every

java program involves these.

August 6, 2009

FIRST SIMPLE PROGRAM

/* This is a simple Java program. Call this file “MyProg.java".*/

class MyProg {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}

}

August 6, 2009

A FIRST SIMPLE PROGRAM

• When a class member is preceded by public, then that member may be accessed by

code outside the class in which it is declared

• Keyword static allows main() to be called without having to instantiate a particular

instance of the class

• Keyword void tells the compiler that main() does not return a value

• String[] args declares a parameter named args, which is an array of instances of the class

String. args receives any command-line arguments.

• The command System.out.println(), prints the text enclosed by quotation on the screen.

• System is a predefined class which provides access to the system

• out is output stream connected to console.

• println displays the string which is passed to it.

39

RUNNING A JAVA APPLICATION

You write
Java code
using an
editor

javac MyProg.java

java MyProg

Java code:
MyProg.java

Bytecode:
MyProg.class

Text Editor

Output

You save the
file with a
.java
extension

You run the
Java
compiler
'javac'

You execute the
bytecode with
the command
'java'

This creates
a file of
bytecode with
a .class
extension

August 6, 2009

COMPILING AND RUNNING

• To compile the program call java compiler javac
C:\>javac Example.java

• The javac compiler creates a file called Example.class that

contains the bytecode version of the program
• The output of javac is not code that can be directly executed

• To actually run the program, you must use the Java interpreter
called java

C:\>java Example

August 6, 2009

A SECOND SHORT PROGRAM

class Example2 {

public static void main(String args[]) {

int num; // this declares a variable called num

num = 100; // this assigns num the value 100

System.out.println("This is num: " + num);

num = num * 2;

System.out.print("The value of num * 2 is ");

System.out.println(num);

}

}

42

COMMENTS

Three kinds of comments:

1. Ignore the text between /* and */

/* text */

2. Documentation comment (javadoc tool uses this kind of comment to
automatically generate software documentation)

/** documentation */

3. Ignore all text from // to the end of the line

// text

43

CODING GUIDELINES

1. Your Java programs should always end with the .java extension.

2. Filenames should match the name of your public class. So for
example, if the name of your public class is Hello, you should save it
in a file called Hello.java.

3. You should write comments in your code explaining what a certain

class does, or what a certain method does.

44

JAVA STATEMENTS AND BLOCKS
CODING GUIDELINES

1. In creating blocks, you can place the opening curly brace in line with the statement.
For example:

public static void main(String[] args){

or you can place the curly brace on the next line, like,

public static void main(String[] args)

{

2. You should indent the next statements after the start of a block.

public static void main(String[] args){

System.out.println("Hello");

System.out.println("world");

}

45

JAVA IDENTIFIERS

• Identifiers are tokens that represent names of variables, methods,
classes, etc.

Examples: Hello, main, System, out.

• Java identifiers are case-sensitive.

i.e. Identifier Hello is not the same as hello.

• Identifiers must begin with either a letter, an underscore “_”, or a dollar
sign “$”. Letters may be lower or upper case. Subsequent characters
may use numbers 0 to 9.

• Identifiers cannot use Java keywords like class, public, void, etc.

46

JAVA IDENTIFIERS CODING GUIDELINES

• For names of classes, capitalize the first letter of the class name.
Example: ThisIsAnExampleOfClassName

• For names of methods and variables, the first letter of the word should
start with a small letter. Example: thisIsAnExampleOfMethodName.

• In case of multi-word identifiers, use capital letters to indicate the start of
the word except the first word. Example, charArray, fileNumber,
className.

• Avoid using underscores at the start of identifier such as _read or _write.

47

JAVA KEYWORDS

• Keywords are reserved words recognized by Java that cannot be used as identifiers.

48

PRIMITIVE DATA TYPES

Java defines eight simple types:

1. byte - 8-bit integer type

2. short - 16-bit integer type

3. int - 32-bit integer type

4. long - 64-bit integer type

5. float - 32-bit floating-point type

6. double - 64-bit floating-point type

7. char - symbols in a character set

8. boolean - logical values true and false

49

PRIMITIVE TYPE: BYTE

8-bit integer type.

Range:

-128 to 127.

Example:

byte b = -15;

Usage: particularly when working with data streams.

50

PRIMITIVE TYPE: SHORT

16-bit integer type.

Range:

-32768 to 32767

Example:

short c = 1000;

Usage: probably the least used simple type.

51

PRIMITIVE TYPE: INT

32-bit integer type.

Range:

-2147483648 to 2147483647.

Example:

int b = -50000;

Usage:

1) Most common integer type. Typically used to control loops and to index arrays.

3) Expressions involving the byte and short values are promoted to int before calculation.

52

PRIMITIVE TYPE: LONG

64-bit integer type.

Range:

-9223372036854775808 to 9223372036854775807.

Example:

long l = 10000000000000000;

Usage:

1) useful when int type is not large enough to hold the desired value

53

EXAMPLE: LONG

// compute the light travel distance

class Light {

public static void main(String args[]) {

int lightspeed = 186000;

long days = = 1000;

long seconds = days * 24 * 60 * 60;

long distance = lightspeed * seconds;

System.out.print("In " + days);

System.out.print(" light will travel about ");

System.out.println(distance + " miles.");

}

}

54

PRIMITIVE TYPE: FLOAT

32-bit floating-point number.

Range:

1.4e-045 to 3.4e+038.

Example:

float f = 1.5;

Usage:

1) fractional part is needed

2) large degree of precision is not required

55

PRIMITIVE TYPE: DOUBLE

64-bit floating-point number.

Range:

4.9e-324 to 1.8e+308.

Example:

double pi = 3.1416;

Usage:

1) accuracy over many iterative calculations

2) manipulation of large-valued numbers

56

EXAMPLE: DOUBLE

// Compute the area of a circle.

class Area {

public static void main(String args[]) {

double pi = 3.1416; // approximate pi value

double r = 10.8; // radius of circle

double a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

57

PRIMITIVE TYPE: CHAR

16-bit data type used to store characters.

Range:

0 to 65536.

Example:

char c = ‘a’;

Usage:

1) Represents both ASCII and Unicode character sets; Unicode defines a character set
with characters found in (almost) all human languages.

2) Not the same as in C/C++ where char is 8-bit and represents ASCII only.

58

EXAMPLE CHAR

// Demonstrate char data type.

class CharDemo {

public static void main(String args[]) {

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

59

PRIMITIVE TYPE: BOOLEAN

Two-valued type of logical values.

Range: values true and false.

Example:

boolean b = (1<2);

Usage:

1) returned by relational operators, such as 1<2

2) required by branching expressions such as if or for

60

EXAMPLE BOOLEAN

class BoolTest {

public static void main(String args[]) {

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

if (b) System.out.println("executed");

b = false;

if (b) System.out.println(“not executed");

System.out.println("10 > 9 is " + (10 > 9));

}

}

61

JAVA LITERALS

• Literals are tokens that do not change - they are constant.

• The different types of literals in Java are:

– Integer Literals

– Floating-Point Literals

– Boolean Literals

– Character Literals

– String Literals

62

INTEGER LITERALS

• Integer literals come in different formats:

– decimal, example: 12

– hexadecimal, example: 0xC

– octal, example: 014

• Integer literals are of type int by default.

• Integer literal written with “L” are of type long e.g. 123L

63

FLOATING POINT LITERALS

• Represents decimals with fractional parts

Example: 3.1416

• Can be expressed in standard or scientific notation e.g.
583.45 (standard),
5.8345e2 (scientific)

• Floating-point literals are of type double by default.

• Floating-point literal written with “F” are of type float e.g. 2.0005e3F

64

BOOLEAN LITERALS

• Boolean literals have only two values, true or false.

• Those values do not convert to any numerical representation.

• In particular:

1) true is not equal to 1

2) false is not equal to 0

65

CHARACTER LITERALS

• Character Literals represent single Unicode characters.

• Unicode character
• A 16-bit character set that replaces the 8-bit ASCII character set.

• Unicode allows the inclusion of symbols and special characters from other
languages.

• To use a character literal, enclose the character in single quote delimiter.
For example

• the letter a, is represented as ‘a’.

• special characters such as a newline character, a backslash is used followed by the
character code. For example, ‘\n’ for the newline character, ‘\r’ for the carriage
return, ‘\b’ for backspace.

66

STRING LITERALS

• String is not a simple type.

• String literals are character-sequences enclosed in double quotes.

• An example of a string literal is, “Hello World!”.

• Notes:

1) Escape sequences can be used inside string literals

2) String literals must begin and end on the same line

3) Unlike in C/C++, in Java String is not an array of characters

67

VARIABLES

• A variable is an item of data used to store the state of objects.

• A variable has a:
• data type, which indicates the type of value that the variable can hold
• name, it must follow rules for identifiers.

• Declare a variable as follows:

<data type> <name> [=initial value];

• Note: Values enclosed in <> are required values, while those values in [] are
optional.

68

VARIABLE DECLARATION

• We can declare several variables at the same time

type identifier [=value][, identifier [=value] …];

• Examples:
int a, b, c;

int d = 3, e, f = 5;

byte hog = 22;

double pi = 3.14159;

char kat = 'x';

69

CONSTANT DECLARATION

• A variable can be declared as final:

final double PI = 3.14;

• The value of the final variable cannot change after it has been
initialized:

PI = 3.13; // Not allowed

70

VARIABLE INITIALIZATION

• During declaration, variables may be optionally initialized.

• Initialization can be static or dynamic:

1. static initialize with a literal:

int n = 1;

2. dynamic initialize with an expression composed of any literals,
variables or method calls available at the time of initialization:

int m = n + 1;

• The types of the expression and variable must be the same.

71

CODING GUIDELINES

• It always good to initialize your variables as you declare them.

• Use descriptive names for your variables. Like for example, if you want to have a
variable that contains a grade for a student, name it as, grade and not just some
random letters you choose.

• Declare one variable per line of code. For example, the variable declarations,

double exam=0;

double quiz=10;

double grade=0;

is preferred over the declaration

double exam=0, quiz=10, grade=0;

72

OUTPUTTING VARIABLE DATA

public class OutputVariable {

public static void main(String[] args){

int value = 10;

char x;

x = ‘A’;

System.out.println(value);

System.out.println(“The value of x=“ + x);

}

}

The program will output the following text on screen:

10

The value of x=A

73

PRIMITIVE AND REFERENCE VARIABLES

• Two types of variables in Java i) Primitive Variables ii) Reference Variables

• Primitive Variables

• variables with primitive data types such as int or long.

• stores data in the actual memory location of the variable

Example: int num = 10; // primitive type

• Reference Variables

• variables that stores the address in the memory location

• points to another memory location where the actual data is

• When you declare a variable of a certain class, you are actually declaring a reference

variable to the object with that certain class.

Example: String name = "Hello"; // reference type

74

ARRAYS

• An array is a group of liked-typed variables referred to by a common name,

with individual variables accessed by their index.

• Arrays are:

1. declared

2. created

3. initialized

4. used

• Also, arrays can have one or several dimensions.

75

ARRAY DECLARATION

• Array declaration involves:

1. declaring an array identifier

2. declaring the number of dimensions

3. declaring the data type of the array elements

• Two styles of array declaration:

type array-variable[];

or

type [] array-variable;

76

ARRAY CREATION

• After declaration, no array actually exists.

• In order to create an array, we use the new operator:

type array-variable[];

array-variable = new type[size];

This creates a new array to hold size elements of type, whose

reference will be kept in the variable array-variable.

77

ARRAY INDEXING

• Later we can refer to the elements of this array through their indexes:

array-variable[index]

• The array index always starts with zero!

• The Java run-time system makes sure that all array indexes are in the
correct range, otherwise raises a run-time error.

78

ARRAY USE

class Array {

public static void main(String args[]) {

int monthDays[];

monthDays = new int[12];

monthDays[0] = 31;

monthDays[1] = 28;

monthDays[2] = 31;

monthDays[3] = 30;

monthDays[4] = 31;

monthDays[5] = 30;

…

monthDays[11] = 31;

System.out.print(“April has ”);

System.out.println(monthDays[3] +“ days.”);

}

}

79

ARRAY INITIALIZATION

• Arrays can be initialized when they are declared:

int monthDays[] = {31,28,31,30,31,30,31,31,30,31,30,31};

• Comments:

1) there is no need to use the new operator

2) the array is created large enough to hold all specified elements

80

MULTIDIMENSIONAL ARRAYS

• Multidimensional arrays are arrays of arrays:

1. declaration

int array[][];

2. Creation

int array = new int[2][3];

3. initialization

int array[][] = { {1, 2, 3}, {4, 5, 6} };

81

EXAMPLE: MULTIDIMENSIONAL ARRAYS

class Array {

public static void main(String args[]) {

int array[][] = { {1, 2, 3}, {4, 5, 6} };

int i, j;

for(i=0; i<2; i++) {

for(j=0; j<3; j++)

System.out.print(array[i][j] + “ ");

System.out.println();

}

}

}

82

OPERATORS

• Java operators are used to build value expressions.

• Java provides a rich set of operators:

1. assignment

2. arithmetic

3. relational

4. logical

5. bitwise

6. other

83

ASSIGNMENT OPERATOR

• A binary operator:

variable = expression;

• It assigns the value of the expression to the variable.

• The types of the variable and expression must be compatible.

• The value of the whole assignment expression is the value of the

expression on the right, so it is possible to chain assignment expressions as

follows:

int x, y, z;

x = y = z = 2;

84

ARITHMETIC OPERATORS

85

ARITHMETIC OPERATORS

• Java supports arithmetic operators for:

- integer numbers

- floating-point numbers

• Note: When an integer and a floating-point number are used as
operands to a single arithmetic operation, the result is a floating point.
The integer is implicitly converted to a floating-point number before
the operation takes place.

86

INCREMENT AND DECREMENT OPERATORS

• unary increment operator (++)

• unary decrement operator (--)

• Increment and decrement operators increase and decrease a value
stored in a number variable by 1.

• For example, the expression,

count=count + 1; // increment the value of count by 1

is equivalent to,

count++;

87

INCREMENT AND DECREMENT OPERATORS

88

INCREMENT AND DECREMENT OPERATORS

• The increment and decrement operators can be placed before or after an operand.

• When used before an operand, it causes the variable to be incremented or
decremented by 1, and then the new value is used in the expression in which it appears.
For example,
int i = 10;

int j = 3;

int k = 0;

k = ++j + i; //will result to k = 4+10 = 14

• When the increment and decrement operators are placed after the operand, the old
value of the variable will be used in the expression where it appears. For example,
int i = 10;

int j = 3;

int k = 0;

k = j++ + i; //will result to k = 3+10 = 13

89

EXAMPLE: INCREMENT/DECREMENT

class IncDec {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c, d;

c = ++b;

d = a++;

c++;

System.out.println(“a= “ + a);

System.out.println(“b= “ + b);

System.out.println(“c= “ + c);

System.out.println(“d= “ + d);

}

}

90

RELATIONAL OPERATORS

• Relational operators determine the relationship that one operand has to the other

operand, specifically equality and ordering.

• The outcome is always a value of type boolean i.e. true or false.

• They are most often used in branching and loop control statements.

91

LOGICAL OPERATOR

& op1 & op2 Logical AND

| op1 | op2 Logical OR

&& op1 && op2 Short-

circuit AND

|| op1 || op2 Short-

circuit OR

! ! op Logical NOT

^ op1 ^ op2 Logical XOR

92

LOGICAL OPERATOR

• Logical operators act upon boolean operands only.

• The outcome is always a value of type boolean.

• In particular, AND and OR logical operators occur in two forms:

1. Full - op1 & op2 and op1 | op2 where both op1 and op2 are
evaluated

2. Short-circuit - op1 && op2 and op1 || op2 where op2 is only
evaluated if the value of op1 is insufficient to determine the final
outcome

93

EXAMPLE: LOGICAL OPERATORS

class LogicalDemo {

public static void main(String[] args) {

int n = 2;

if (n != 0 && n / 0 > 10)

System.out.println("This is true");

else

System.out.println("This is false");

}

}

94

BITWISE OPERATORS

• Bitwise operators apply to integer types only.

• They act on individual bits of their operands.

• There are three kinds of bitwise operators:

1) basic bitwise AND, OR, NOT and XOR

2) shifts left, right and right-zero-fill

3) bitwise assignment for all basic and shift operators

95

BITWISE OPERATORS

~ ~ op inverts all bits of its operand

& op1 & op2 produces 1 bit if both operands are 1

| op1 | op2 produces 1 bit if either operand is 1

^ op1 ^ op2 produces 1 bit if exactly one operand is 1

>> op1 >> op2 shifts all bits in op1 right by the value of op2

<< op1 << op2 shifts all bits in op1 left by the value of op2

>>> op1 >>> op2 shifts op1 right by op2 value, write zero on the left

96

EXAMPLE: BITWISE OPERATORS

class BitLogic {

public static void main(String args[]) {

String binary[] = { "0000","0001", … , “1111"};

int a = 3; // 0011 in binary

int b = 6; // 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

System.out.print("a =" + binary[a]);

System.out.println("and b =" + binary[b]);

System.out.println("a|b = " + binary[c]);

System.out.println("a&b = " + binary[d]);

System.out.println("a^b = " + binary[e]);

}

}

97

OTHER OPERATORS

?: shortcut if-else statement / conditional operator

[] used to declare arrays, create arrays, access array elements

. used to form qualified names

(params) delimits a comma-separated list of parameters

(type) casts a value to the specified type

new creates a new object or a new array

instanceof determines if its first operand is an instance of the second

98

CONDITIONAL OPERATOR

• General form:

expr1 ? expr2 : expr3

Where:

1) expr1 is of type boolean

2) expr2 and expr3 are of the same type

• If expr1 is true, expr2 is evaluated, otherwise expr3 is evaluated.

99

EXAMPLE: CONDITIONAL OPERATOR

class Ternary {

public static void main(String args[]) {

int i, k;

i = 10;

k = i < 0 ? -i : i;

System.out.print("Abs value of “ + i + " is " + k);

i = -10;

k = i < 0 ? -i : i;

System.out.print("Abs value of “ + i + " is " + k);

}

}

100

OPERATOR PRECEDENCE

• Java operators are assigned precedence order.

• Precedence determines that the expression

1 + 2 * 6 / 3 > 4 && 1 < 0

is equivalent to

(((1 + ((2 * 6) / 3)) > 4) && (1 < 0))

• When operators have the same precedence, the earlier one binds
stronger.

101

OPERATOR PRECEDENCE

102

TYPE DIFFERENCES

• Suppose a value of one type is assigned to a variable of another type.

T1 t1;

T2 t2 = t1;

• What happens? Different situations:

1) types T1 and T2 are incompatible

2) types T1 and T2 are compatible:

a) T1 and T2 are the same

b) T1 is larger than T2

c) T2 is larger than T1

103

TYPE COMPATIBILITY

• When types are compatible?

1. integer types and floating-point types are compatible with
each other

2. numeric types are not compatible with char or boolean

3. char and boolean are not compatible with each other

• Examples:

byte b;

int i = b;

char c = b; // Not allowed

104

WIDENING TYPE CONVERSION

• Java performs automatic type conversion when:

1) two types are compatible

2) destination type is larger than the source type

• Example:

int i;

double d = i;

105

NARROWING TYPE CONVERSION

• When:
1. two types are compatible

2. destination type is smaller then the source type then Java will not carry out type-
conversion:

int i;

byte b = i;

• Instead, we have to rely on manual type-casting:

int i;

byte b = (byte)i;

106

TYPE CASTING

• General form: (targetType) value

• Examples:

1) integer value will be reduced module byte’s range:

int I = 500;

byte b = (byte) i;

2) floating-point value will be truncated to integer value:

float f = 3.4;

int i = (int) f;

107

EXAMPLE: TYPE CASTING

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\ndouble to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

}

}

108

TYPE PROMOTION

• In an expression, precision required to hold an intermediate value
may sometimes exceed the range of either operand:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

• Java promotes each byte operand to int when evaluating the
expression.

109

TYPE PROMOTION RULES

1. byte and short are always promoted to int

2. if one operand is long, the whole expression is promoted to long

3. if one operand is float, the entire expression is promoted to float

4. if any operand is double, the result is double

110

EXAMPLE: TYPE PROMOTION

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println("result = " + result);

}

}

111

EXERCISE: OPERATORS

1) What operators do the code snippet below contain?

arrayOfInts[j] > arrayOfInts[j+1];

2) Consider the following code snippet:

int i = 10;

int n = i++%5;

a) What are the values of i and n after the code is executed?

b) What are the final values of i and n if instead of using the postfix increment operator
(i++), you use the prefix version (++i))?

3) What is the value of i after the following code snippet executes?

int i = 8;

i >>=2;

4) What’s the result of

System.out.println(010| 4); ?

112

CONTROL FLOW

113

CONTROL FLOW

• Writing a program means typing statements into a file.

• Without control flow, the interpreter would execute these statements in
the order they appear in the file, left-to-right, top-down.

• Control flow statements, when inserted into the text of the program,
determine in which order the program should be executed.

114

CONTROL FLOW STATEMENTS

• Java control statements cause the flow of execution to advance and
branch based on the changes to the state of the program.

• Control statements are divided into three groups:

1. selection statements allow the program to choose different parts of
the execution based on the outcome of an expression

2. iteration statements enable program execution to repeat one or more
statements

3. jump statements enable your program to execute in a non-linear
fashion

115

SELECTION STATEMENTS

• Java selection statements allow to control the flow of program’s
execution based upon conditions known only during run-time.

• Java provides four selection statements:

1) if

2) if-else

3) if-else-if

4) switch

116

IF STATEMENTS

• General form:

if (expression) statement

• If expression evaluates to true, execute statement, otherwise do
nothing.

• The expression must be of type boolean.

117

SIMPLE/COMPOUND STATEMENTS

• Simple

if (expression) statement;

• Compound

if (expression) {

statement;

}

118

IF-ELSE STATEMENTS

• Suppose you want to perform two different statements depending on

the outcome of a boolean expression. if-else statement can be used.

• General form:

if (expression)

statement1

else

statement2

• Again, statement1 and statement2 may be simple or compound.

119

IF-ELSE-IF STATEMENTS

• General form:
if (expression1) statement1

else if (expression2) statement2

else if (expression3) statement3

…

else statement

• Semantics:

1) statements are executed top-down

2) as soon as one expressions is true, its statement is executed

3) if none of the expressions is true, the last statement is executed

120

EXAMPLE: IF-ELSE-IF

class IfElse {

public static void main(String args[]) {

int month = 4;

String season;

if (month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

else season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

121

SWITCH STATEMENTS

• switch provides a better alternative than if-else-if when the execution

follows several branches depending on the value of an expression.

• General form:

switch (expression) {

case value1: statement1; break;

case value2: statement2; break;

case value3: statement3; break;

…

default: statement;

}

122

SWITCH ASSUMPTIONS/SEMANTICS

• Assumptions:

1) expression must be of type byte, short, int or char

2) each of the case values must be a literal of the compatible type

3) case values must be unique

• Semantics:

1) expression is evaluated

2) its value is compared with each of the case values

3) if a match is found, the statement following the case is executed

4) if no match is found, the statement following default is executed

• break makes sure that only the matching statement is executed.

• Both default and break are optional.

123

EXAMPLE: SWITCH
class Switch {

public static void main(String args[]) {

int month = 4;

String season;

switch (month) {

case 12:

case 1:

case 2: season = "Winter"; break;

case 3:

case 4:

case 5: season = "Spring"; break;

case 6:

case 7:

case 8: season = "Summer"; break;

case 9:

case 10:

case 11: season = "Autumn"; break;

default: season = "Bogus Month";

}

System.out.println("April is in " + season + ".");

}

}

124

NESTED SWITCH STATEMENTS

• A switch statement can be nested within another switch statement:

switch(count) {

case 1:

switch(target) {

case 0:System.out.println(“target is zero”);

break;

case 1:System.out.println(“target is one”);

break;

}

break;

case 2: …

}

• Since, every switch statement defines its own block, no conflict arises between the
case constants in the inner and outer switch statements.

125

COMPARING SWITCH AND IF

• Two main differences:

1) switch can only test for equality, while if can evaluate any kind of boolean
expression

2) Java creates a “jump table” for switch expressions, so a switch statement is
usually more efficient than a set of nested if statements

126

ITERATION STATEMENTS

• Java iteration statements enable repeated execution of part of a program until
a certain termination condition becomes true.

• Java provides three iteration statements:

1. while

2. do-while

3. for

127

WHILE STATEMENTS

• General form:

while (expression) statement

• where expression must be of type boolean.

• Semantics:

1. repeat execution of statement until expression becomes false

2. expression is always evaluated before statement

3. if expression is false initially, statement will never get executed

128

EXAMPLE: WHILE

class MidPoint {

public static void main(String args[]) {

int i, j;

i = 100;

j = 200;

while(++i < --j) {

System.out.println(“i is " + i);

System.out.println(“j is " + j);

}

System.out.println(“The midpoint is " + i);

}

}

129

DO-WHILE STATEMENTS

• If a comound statement has to be executed at least once, the do-while
statement is more appropriate than the while statement.

• General form:

do statement

while (expression);

• where expression must be of type boolean.

• Semantics:

1. repeat execution of statement until expression becomes false

2. expression is always evaluated after statement

3. even if expression is false initially, statement will be executed

130

EXAMPLE: DO-WHILE

class DoWhile {

public static void main(String args[]) {

int i;

i = 0;

do

i++;

while (1/i < 0.001);

System.out.println(“i is “ + i);

}

}

131

FOR STATEMENTS

• When iterating over a range of values, for statement is more suitable
to use than while or do-while.

• General form:

for (initialization; termination; increment)

statement

• where:

1. initialization statement is executed once before the first iteration

2. termination expression is evaluated before each iteration to
determine when the loop should terminate

3. increment statement is executed after each iteration

132

FOR STATEMENTS

• This is how the for statement is executed:

1. initialization is executed once

2. termination expression is evaluated:

a) if false, the statement terminates

b) otherwise, continue to (3)

3. increment statement is executed

4. component statement is executed

5. control flow continues from (2)

133

LOOP CONTROL VARIABLE

• The for statement may include declaration of a loop control variable:

for (int i = 0; i < 1000; i++) {

…

}

• The variable does not exist outside the for statement.

134

EXAMPLE: FOR

class FindPrime {

public static void main(String args[]) {

int num = 14;

boolean isPrime = true;

for (int i=2; i < num/2; i++) {

if ((num % i) == 0) {

isPrime = false;

break;

}

}

if (isPrime)
System.out.println("Prime");

else System.out.println("Not Prime");

}

}

FOR-EACH VERSION OF THE FOR LOOP

• The for-each style of for is also referred to as the enhanced for loop. The general
form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

• type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end.

• With each iteration of the loop, the next element in the collection is retrieved and
stored in itr-var.

• The loop repeats until all elements in the collection have been obtained.

• Because the iteration variable receives values from the collection, type must be the
same as (or compatible with) the elements stored in the collection.

• The following fragment uses a traditional for loop to compute the sum of the values
in an array:

EXAMPLE: FOR-EACH

// Java program to sum the elements of the array {1, 2, 3, 4, 5, 6, 7, 8.9, 10}

// using "for-each" version of the for loop.

class ForEach {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

// use for-each style for to display and sum the values

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x;

}

System.out.println("Summation: " + sum);

}

}

• The output from the program is shown here.

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 6

Value is: 7

Value is: 8

Value is: 9

Value is: 10

Summation: 55

EXAMPLE: FOR-EACH

138

MANY INITIALIZATION/ITERATION PARTS

• The for statement may include several initialization and iteration parts.

• Parts are separated by a comma:

int a, b;

for (a = 1, b = 4; a < b; a++, b--) {

…

}

139

FOR STATEMENT VARIATIONS

• The for statement need not have all components:

class ForVar {

public static void main(String args[]) {

int i = 0;

boolean done = false;

for(; !done;) {

System.out.println("i is " + i);

if(i == 10) done = true;

i++;

}

}

}

140

EMPTY FOR

• In fact, all three components may be omitted:

public class EmptyFor {

public static void main(String[] args) {

int i = 0;

for (; ;) {

System.out.println(“Infinite Loop “ + i);

}

}

}

141

JUMP STATEMENTS

• Java jump statements enable transfer of control to other parts of
program.

• Java provides three jump statements:

1) break

2) continue

3) return

• In addition, Java supports exception handling that can also alter the
control flow of a program.

142

BREAK STATEMENTS

• The break statement has three uses:

1. to terminate a case inside the switch statement

2. to exit an iterative statement

3. to transfer control to another statement

• (1) has been described.

• We continue with (2) and (3).

143

LOOP EXIT WITH BREAK

• When break is used inside a loop, the loop terminates and control is
transferred to the following instruction.

class BreakLoop {

public static void main(String args[]) {

for (int i=0; i<100; i++) {

if (i == 10) break;

System.out.println("i: " + i);

}

System.out.println("Loop complete");

}

}

144

BREAK IN NESTED LOOP

• Used inside nested loops, break will only terminate the innermost loop:

class NestedLoopBreak {

public static void main(String args[]) {

for (int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for (int j=0; j<100; j++) {

if (j == 10) break;

System.out.print(j + " ");

}

System.out.println();

}

System.out.println("Loops complete.");

}

}

145

CONTROL TRANSFER WITH BREAK

• Java does not have an unrestricted “goto” statement, which tends
to produce code that is hard to understand and maintain.

• However, in some places, the use of gotos is well justified. In
particular, when breaking out from the deeply nested blocks of
code.

• break occurs in two versions:

1) unlabelled

2) labeled

• The labeled break statement is a “civilized” replacement for goto.

146

LABELED BREAK

• General form:

break label;

• where label is the name of a label that identifies a block of code:

label: { … }

• The effect of executing break label; is to transfer control
immediately after the block of code identified by label.

147

EXAMPLE: LABELED BREAK

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if (t) break second;

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println(“After second block.");

}

}

}

148

EXAMPLE: NESTED LOOP BREAK

class NestedLoopBreak {

public static void main(String args[]) {

outer: for (int i=0; i<3; i++) {

System.out.print("Pass " + i + ": ");

for (int j=0; j<100; j++) {

// exit both loops

if (j == 10) break outer;
System.out.print(j + " ");

}

System.out.println("This will not print");

}

System.out.println("Loops complete.");

}

}

149

CONTINUE STATEMENT

• The break statement terminates the block of code, in particular it
terminates the execution of an iterative statement.

• The continue statement forces the early termination of the current
iteration to begin immediately the next iteration.

• Like break, continue has two versions:

1. unlabelled – continue with the next iteration of the current loop

2. labeled – specifies which enclosing loop to continue

150

EXAMPLE: UNLABELED CONTINUE

class Continue {

public static void main(String args[]) {

for (int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

151

EXAMPLE: LABELED CONTINUE

class LabeledContinue {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++) {

for (int j=0; j<10; j++) {

if (j > i) {

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

152

RETURN STATEMENT

• The return statement is used to return from the current method: it
causes program control to transfer back to the caller of the
method.

• Two forms:

1) return without value

return;

2) return with value

return expression;

153

EXAMPLE: RETURN

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if (t) return; // return to caller

System.out.println("This won't execute.");

}

}

THANK YOU!

