
C Programming for Problem Solving Module5 

1 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

Module 5 
(Structures, Pointers and Preprocessor Directives) 

Pointers 
1. What is pointer in C? What are the benefits of using pointers? How to declare and 

initialize pointer. Explain with an example. 
2. Develop a C program to swap two numbers using pointer. 

3. Write a program in C to find the sum, mean and standard deviation of all elements in 
an array using pointers. 

Structures 
4. What is structure in C? With an example Explain How to define and declare structure. 

Compare array and structure 
5. Implement structures to read, write and compute average marks and the students 

scoring above and below the average marks for a class of N students. 
6. Using nested structure Develop a C program to read and display the details of 100 

employees. 
7. Develop a C program to Add two complex numbers using structures 
8. With an example explain array of structure and nested structure? Also explain how to 

define and declare it 
9. Using nested structure Develop a C program to read and display the details of 100 

students. 

Preprocessor Directives 
10. What is preprocessor directives? Explain different categories of pre-processor 

directives used in C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C Programming for Problem Solving Module5 

2 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

 

1. What is pointer in C? What are the benefits of using pointers? How to 
declare and initialize pointer. Explain with an example. 

A Pointer is a variable that holds the address of another variable 
Advantages of using Pointer (Why pointer is required or Benefit of using pointer): 

 It allows to use dynamic memory allocation 

 It help to implement call by reference technique 

 Helps to return more than one value from function 

 It provide direct access to memory 

 It reduces storage space of program 

 It improve execution speed of program 

 Help to build complex data structures such as linked list, tree, graph etc. 
 How to declare Pointers? 
Syntax for Declaration: 

                        data_type *pointer_name; 
Example: 

                              int *ptr; 
                             float *p; 
                            char *cptr; 

How to Initialize Pointers? Assigning value to pointer is called pointer initialization. 
Syntax:     pointername=&variableName; 
Example: 

               int *p1;/* declaring pointer*/ 
               Int x,y; ; 
              x=50; 
             p1=&x; /* initialize pointer p1, ie; storing address of x in p1*/ 
             y=*p1; /* getting value from address in p1 and storing it in b*/                                          

We have used two operators * and &: 

 *: Content of the specified address 

 & : Address 
 

 

 

 

  

 

 

 

 

 

 

 



C Programming for Problem Solving Module5 

3 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

 

Example: 
#include<stdio.h> 
void main() 
{ 
int *p;  
int x=10,y=20; 
printf("Original: x=%d\t, y=%d\n",x,y); 
p=&x; 
y=*p; 
printf("Now Changed values: x=%d\t, y=%d\n",x,y); 
printf(" p=%u\n",p); 
printf("&p=%u\n",&p); 
printf("*p=%d\n",*p); 
printf("*(&p)=%u\n",*(&p)); 
printf("Address of x=%u\n",&x); 
printf("Address of y=%u\n",&y); 

} 
 

 

2. Write a C Program to swap Two number using Pointer 

#include <stdio.h> 

void swap(int * n1, int * n2) 

{ 

    int temp; 

    temp = *n1; 

    *n1 = *n2; 

    *n2 = temp; 

} 

int main() 

{ 

    int a = 15, b = 100; 

    printf("Before Swapping: a=%d\t, b=%d\n",a,b); 

    swap( &a, &b); 

    printf("After Swapping: a=%d\t, b=%d\n",a,b); 

} 

 

Output: 

Before Swapping: a=15   , b=100 

  Swapping: a=100   , b=15     

 

Output: 
Original: x=10  , y=20                              
Now Changed values: x=10 , y=10                    
p=3271248256                                                      
 &p=3271248264                                                  
  *p=10                                                                    
   *(&p)=3271248256  
Address of x=3271248256       
Address of y=3271248260  



C Programming for Problem Solving Module5 

4 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

3. Develop a program using pointers to compute the sum, mean and standard 
deviation of all elements stored in an array of n real numbers. 
[Pointer to array] 

Program: 
          #include<stdio.h> 
          #include<math.h> 
          main() 
          { 

float a[10], *ptr, mean,var, std, sum=0, sumstd=0; 
int n,i; 
printf("Enter the no of elements\n"); 

      scanf("%d",&n); 
printf("Enter the array elements\n");  
for(i=0;i<n;i++) 
  { 
      scanf("%f",&a[i]); 
  } 
ptr=a;  // initialization of a pointer to array  (ie;  ptr=&a[0] ) 
for(i=0;i<n;i++) 
  { 
       sum=sum+ *ptr; // Calculate sum 
       ptr++; // move to next array element 
  } 
mean=sum/n;//   Calculate Mean 
ptr=a; // initialization of a pointer to array (ie;  ptr=&a[0] ) 
 
for(i=0;i<n;i++) 
  { 
     sumstd=sumstd + pow((*ptr - mean),2);  
     ptr++;  // move to next array element 
  } 
var=sumstd/n; 
std= sqrt(var); //Calculate standard deviation 
printf("Sum=%f\t",sum); 
printf("Mean=%f\t",mean); 
printf("Standard deviation=%f\t",std); 

         } 

Out put: 
Enter the no of elements 
6 
Enter the array elements 
12 13 44 34 44 32 
Sum=179.000000  Mean=29.833334  Standard deviation=13.069260     



C Programming for Problem Solving Module5 

5 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

4. What is structure in C? With an example Explain How to define and declare 

structure. Compare array and structure 

A structure is collection of variety of elements which can be of different data types. 

A structure is collection of elements with different data types. 

How to declare and define Structures 

Before declaring structure we have to define structure. We can define structure by using 

struct keyword. There are three method for defining and declaring structure. They are shown 

below. 

No.1: Defining and declaring structures separately-Here first we have to define structure 

and then we can declare structure by using struct keyword. Syntax and example shown below 

(Defining Structure with name: student, and declaring structure variable s1 and s2). 

 
No.2: Defining and declaring structures together-Here we have to define and declare 

structure together by using struct keyword. Syntax and example shown below  

 
 



C Programming for Problem Solving Module5 

6 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

 

No.3: Defining and declaring structure by using typedef-Here we are defining user 

defined structure with typedef keyword. Then we are declaring structure by using user 

defined structure type. Its syntax and example shown below. 

 
Arrays and Structure-Comparison: 

1) Array is a collection of elements with same data types. Structure is a collection of 

elements with different data types 

2) Array elements can be accessed by the index placed within []. Structure elements 

can be accessed with the help of. (Dot) operator 

3) To represent array, Array name is followed by []. To represent structure, a 

keyword struct has to be used 

4) Example: for array: 

int a[20]; 

                                 

                          Example for structure: 

                                    struct Student 

                                     { 

                                         int RollNo; 

                                         char Name[25]; 

                                     } s1; 

 

 

 

 

 

 

 



C Programming for Problem Solving Module5 

7 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

5. Implement structures to read, write and compute average marks and the 
students scoring above and below the average marks for a class of N 
students. 

Program: 
#include<stdio.h> 
struct Student // Defining structure 

     { 
            int rollNo; 
           char name[25]; 
          int mark; 
      } s[100];// Declaring array of structure 

     
       int main() 
      {  
        int n,i,avg,sum=0; 
        printf("Enter the no.of students\n"); 

  scanf("%d",&n); 
  for(i=0;i<n;i++) // to Read student details one by one 
  { 
    printf("Enter Roll No ,Name and Mark of Student:\n " ); 
    scanf("%d%s%d",&s[i].rollNo, s[i].name,&s[i].mark);  
    sum=sum+s[i].mark;// calculate total mark 
  } 
  avg=sum/n; // calculate average mark 
  printf("Average Mark= %d\n",avg); 
  printf("Students with mark greater than average:\n"); 
  printf("\n Roll_No    Name  Mark\n"); 
  for(i=0;i<n;i++)  
  { 
      if(s[i].mark>=avg) 
     printf("%d  %s    %d\n", s[i].rollNo,s[i].name,s[i].mark); 
  } 
   printf("Students with mark below average :\n"); 
   printf("\n Roll_No    Name  Mark\n"); 
   for(i=0;i<n;i++)  
   { 
    if(s[i].mark<avg) 
     printf("%d  %s    %d\n", s[i].rollNo,s[i].name,s[i].mark); 
   } 
 } 

 

 

 



C Programming for Problem Solving Module5 

8 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

6. Using nested structure Develop a C program to read and display the details 

of 100 employees. 

#include<stdio.h> 

struct Date 

    { 

       int dd; 

       int mm; 

       int yyyy; 

    }; 

struct Employee 

    { 

       int EmpID; 

       char Name[25]; 

       struct Date DOJ;  // Nested structure 

    } s[100];  //Array of structure 

void main() 

{   

  int n,i; 

  printf(“Enter the no.of Employee\n”); 

  scanf(“%d”,&n); 

  for(i=0;i<n;i++)  

  { 

    printf(“Enter EmpID, Name and DOJ of Employee %d\n”,i+1); 

    scanf(“%d%s%d%d%d”,&s[i].EmpID,s[i].Name,&s[i].DOJ.dd,&s[i].DOJ.mm,&s[i].DOJ.yyyy);  

  } 

 printf(”Student Detail:\n”), printf(“\n EmpID    Name  DOJ\n”); 

for(i=0;i<n;i++) 

 { 

    printf(“%d  %s    %d-%d-%d\n”, s[i].EmpID,s[i].Name,s[i].DOJ.dd,s[i].DOJ.mm,s[i].DOJ.yyyy); 

  } 

} 

 

 

 

 

 

 

 



C Programming for Problem Solving Module5 

9 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

7. Develop a C program to Add two complex numbers using structures 
#include <stdio.h> 

struct complex 

{ 

  int real, img; 

}; 

main() 

{ 

  struct complex a, b, c; 

  printf("Enter a and b where a + ib is the first complex number.\n"); 

 scanf("%d%d", &a.real, &a.img); 

 printf("Enter c and d where c + id is the second complex number.\n"); 

 scanf("%d%d", &b.real, &b.img);   

 c.real = a.real + b.real; 

 c.img = a.img + b.img; 

 printf("Sum of the complex numbers: (%d) + (%di)\n", c.real, c.img); 

 } 

8. With an example explain array of structure and nested structure? With an 
example explain how to define and declare it 

Array of structure: 
• Array of structures is nothing but collection homogeneous of structures.  
• This is also called as structure array in C. 
• If you wish to maintain the information of ‘n‘ employees or Students then you need to 

declare an array of structure 
Example for defining and declaring array of structure 

         struct Student 

   { 

       int RollNo; 

       char Name[25]; 

       float Mark; 

    } s[10];  //  defining and declaring Array of structure 

      Nested Structure: 

• A structure is collection of elements with different data types. 

• A structure present within another Structure is called Nested Structure 

     Example for nested structure: 

               

 

 
 

struct Date 
    {  

       int dd; 

       int mm; 

       int yyyy; 

    }; 

struct Student 

    {  

       int RollNo; 

       char Name[25]; 

      struct Date DOJ;  //Nested structure 

    } s1,s2; 



C Programming for Problem Solving Module5 

10 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

9. Using nested structure Develop a C program to read and display the details 
of 100 students. 

 
Output: 

Enter the no.of students                                                                      

3                                                                                              

Enter Roll No,Name and DOJ of student 1                                                        

1001 sachin 22 5 1999                                                                          

Enter Roll No,Name and DOJ of student 2                                                        

1002 Richard 22 2 2000                                                                   

Enter Roll No,Name and DOJ of student 3                                                        

1003 Ahmed 20 5 2018                                                                           

Student Detail:                                                                                                                       

                               

Roll_No    Name  DOJ   

1001  sachin    22/5/1999                                                 

1002  Richard    22/2/2000   

1003 Ahmed    20/5/2018 

 

 

 

 

 

 

 

 

 



C Programming for Problem Solving Module5 

11 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

10.What are preprocessor directives? Explain different categories of pre-
processor directives used in C. 

 Before a C program is compiled in a compiler, source code is processed by a program called 

preprocessor. This process is called preprocessing. 

 Commands used in preprocessor are called preprocessor directives. Preprocessor directives are 

placed in the source program before the main line. They begin with “#” symbol. 

 Categories of Preprocessors directives 

1) File inclusion directives 

2) Macro substitution directives 

3) Compiler control directives 

 

• File inclusion Directives(#include directive ) 
– An external file containing functions or macro definition can be included as part 

of program so that we need not  rewrite those functions  or macro definitions  
– Puts copy of file in place of directive 
– This is achieved by Two forms 

• #include <filename> 
– For standard library header files 
– Example: #include<stdio.h> 

• #include "filename" 
– Searches in current directory 
– Normally used for programmer-defined files 
– Example: #include “test.c” 

• Macro substitutions (#define ) 
• Macro substitution is a process where an identifier in program is 

replaced by a predefined string composed of one or more tokens. 
The preprocessor accomplishes this task under the direction of 
#define statement. This statement usually known as macro 
statements or macros. 

– There are three forms of macro substitutions. They are  
• Simple macro substitution 
• Argumented macron substitution 
• Nested macro substitution 

– Simple macro substitution: It is also used to define symbolic constants. 
• Constants represented as symbols 
• When program compiled, all occurrences replaced 
• Format 

• #define identifier replacement-text 
• Example: #define PI 3.14159 

• Everything to right of identifier replaces text 
• #define PI 3.14159 - Replaces PI with "3.14159" 

 
 



C Programming for Problem Solving Module5 

12 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

– Argumented macro substitution (Macro with argument) 
o The preprocessor permit us to define more complex and more useful form 

of replacement 
o It takes the form: #define identifier(f1,f2,f3,…, fn)  string 

 Where identifier f1,f2,…fn are formal macro argument that are 
similar to formal argument in function definition 

 When a macro is called, the preprocessor substitute the string, 
replacing the formal parameter with actual parameter, Hence the 
string behave like a template. 

 Example: #define cube(x)     (x*x*x) 
If the statement, Volume = cube (side); appear later in the 
program then the preprocessor would expand this statement to  
Volume = (side*side*side); 

- Nested Macros substitution:  
o We can also use one macro in definition of another macro and that’s 

known as nested macros 
o Example:        

 #define M 5 
             #define N M*5 //nested macro 

– Undefining a macro: 
o A defined macro can be undefined, using the statement 

  #undef  identifier 
 This is useful when we want to restrict the definition only to a 

particular part of the program 
 Compiler control directives: 

o While developing large program, you may face many problems or different situation.  

o One solution to these problem is to develop different program to suit the needs 

of different situation.  

o Another solution is to develop a single, comprehensive program that include all 

optional code and then direct the compiler to skip over certain parts of source 

code when they are not required. 

o C preprocessor offer a feature known as Conditional compilation, which can be 

used to switch on or off a particular line or group of lines in a program. They are 

 #ifdef  to check whether macro is defined or not  
 #ifndef to check whether macro is not defined yet   
 #undef to undefined macro 
 #endif to represent end of #if   
 #if, #else  more general form to represent constant-expression 

 
 
 
 
 
 



C Programming for Problem Solving Module5 

13 
Prepared by: Prof.Abdul Majeed Chemnad, Dept of CSE, PACE Mangalore 

 Example: 
#include “DEFINE.H” 
#ifndef TEST 
#define TEST 1 
#endif 

 #DEFINE.H is a header file that is supposed to contain the definition of 

TEST macro. The directive #ifndef TEST searches for the definition of TEST 

in the header file and if not defined, then all the lines between #ifndef 

and corresponding #endif directives are left active in the program. In case 

if the TEST has been defined in the header file then the #ifndef condition 

becomes false, therefore the #define TEST 1 is ignored. 

 ANSI addition: 

o #elif  provide alternative test facility(if-else-if sequence) 

o #pragma Specifies certain instructions 

o #error Stop compilation when an error occurs 

o # Stringizing operator 

o ## Token pasting operator 

 

 Example: #elif directives 

#if expression1 

  Statement1; 

#elif expression2 

Statement2; 

……………….. 

          #elif expression n 

     Statement n; 

      #endif 

 Example: #pragma directives 

o #pragma name        where name of the pragma we want 

 Example for #error directives: 

o #error message        where message is any error message  

 

 


