
C Programming for Problem solving

1 Dept of CSE | PACE Mangalore

Module 3

 (Arrays, Matrix, Strings, Searching and Sorting)

1. What is Arrays and Matrix? How to declare and initialize 1-D and 2-D Arrays? Explain
with an example.

2. Develop C Program for the following Problems:

i) To display principal diagonal elements of Matrix

ii) To Find the sum of two matrices

ii) To generate Fibonocci series using arrays

iv) To find the sum of array elements

v) To find the largest elements of an array

3. What is searching and sorting? With an example explain linear search , Binary search,
Bubble sort and selection sorting Algorithms

4. Sort the following elements using: i) Selection Sort ii) Bubble Sort

89 78 65 90 75 40

5. Write a C program for the following
a. Linear Search
b. Binary search
c. Selection sort
d. Bubble sort

6. What is String in C? With an example explain any six string handling functions in C
7. Write a C Program to find the length of string, copy the content of one string to other

string, concatenate two string and compare two strings without using built in functions

C Programming for Problem solving

2 Dept of CSE | PACE Mangalore

What is arrays? What are the different types of arrays? How to declare and initialize arrays? Explain

with an example

Array is a collection of homogeneous elements (ie; the collection of elements with same data types)

Why do we need arrays?

We can use normal variables (a1, a2, a3, ..) when we have a small number of objects, but if we

want to store a large number of instances, it becomes difficult to manage them with normal

variables. The idea of an array is to represent many instances in one variable.

• Without using arrays: int a1,a2,a3,a4,a5;

• With array: int a[5]; need to remember only one variable name.

Types of an arrays:

 One Dimensional arrays : Known as List Ex: int A[10];

 Multi Dimensional (Ex: Two Dimensional) arrays: Ex: int B[5][5];

How to declare arrays?

• One Dimensional array:

Syntax:

Datatype Arrayname[Size];

Ex: int A[5];

 float Bal[5];

 char Name[25];

• Two Dimensional array:

Data_type Array_name[RowSize][ColSize];

Ex: int A[2][3];

float Bal[5][10];

i/j 0 1 2

0 A[0][0] A[0][1] A[0][2]

1 A[1][0] A[1][1] A[1][2]

How to initialize arrays?

Assigning value to array is known as initialization of array

 0 1 2 3 4

A

Indices

A[2][3]

C Programming for Problem solving

3 Dept of CSE | PACE Mangalore

C Programming for Problem solving

4 Dept of CSE | PACE Mangalore

Some Example:

• C Program to read array elements and print in reverse order

• To find the sum of array elements

C Programming for Problem solving

5 Dept of CSE | PACE Mangalore

• Find the largest elements in an array

Program To print transpose of matrix and principle diagonal elements of matrix

#include<stdio.h>

void main()

{

 int A[5][5],B[5][5],m,n,i,j;

 printf(“Enter the Rows and Col \n”);// reading order of matrix

 scanf(“%d%d”,&m,&n);

 printf(“\nEnter elements of Matrix:\n”);// matrix initialization

 for(i=0;i<m;i++)

 for(j=0;j<n;j++)

 {

 scanf(“%d”,&A[i][j]);

 B[j][i]=A[i]j[j];// generating transpose of matrix

 }

 printf(“\n Given Matrix is\n”);//print matrix

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 printf(“%d\t”,A[i][j]);

 printf(“\n”);

 }

printf(“\n Transpose of Matrix is\n”);// print its transpose

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 printf(“%d\t”,B[i][j]);

 printf(“\n”);

 }

C Programming for Problem solving

6 Dept of CSE | PACE Mangalore

printf(“\n Principle diagonal elements of Matrix is\n”);

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 if(i==j) // checking whether its diagonal elememts

 printf(“%d\t”,A[i][j]);// print diagonal elements

 else

 print”\t”);

 printf(“\n”);

 }

}

Output:

Enter the Rows and Col

3 3

Enter elements of Matrix:

1 2 3 4 5 6 7 8 9

 Given Matrix is

1 2 3

4 5 6

7 8 9

 Transpose of Matrix is

1 4 7

2 5 8

3 6 9

 Principle diagonal elements of Matrix is

1

 5

 9

C Programming for Problem solving

7 Dept of CSE | PACE Mangalore

Character Array(Strings):

What is strings? How to declare and initialize strings? Explain with an example

What is string?

• String is defined as an array of characters

• String is terminated with a special character ‘\0’.

C Programming for Problem solving

8 Dept of CSE | PACE Mangalore

What are String Handling Functions/String manipulation functions? Explain with an example OR

Demonstrate the use of of strlen(), strcpy(), strcat() strcmp() functions

• C supports a large number of string handling functions in the standard library "string.h".

• #include <string.h> to be used

Function Description Function Description

strlen() Calculates the length of string strcat() Concatenates(joins) two strings

strcpy()
Copies a string to another

string
 strcmp() Compares two string

strlen(): The strlen() function calculates the length of a given string. The strlen() function is

defined in string.h header file. It doesn’t count null character ‘\0’.

Syntax:
length=strlen(str);

Parameter:
 str: It represents the string variable whose length we have to find.

Return: This function returns the length of string passed.

Ex: str=”VTU”;

 len=strlen(str); // ie;now len=3

https://www.geeksforgeeks.org/strlen-function-in-c/

C Programming for Problem solving

9 Dept of CSE | PACE Mangalore

strcat(): The strcat() function will append a copy of the source string to the end of destination

string. The strcat() function takes two arguments:

 1) dest

 2) src

It will append copy of the source string in the destination string. The terminating character at

the end of dest is replaced by the first character of src .

Return value: The strcat() function returns dest, the pointer to the destination string.

Syntax:

strcat(dest, src);

Ex: dest=”VTU”;

 src=”Belegavi”;

 strcat(dest,src);// ie; now dest=VTUBelegavi

strcpy(): strcpy() is a standard library function in Cand is used to copy one string to another. In

C it is present in string.h header file

Syntax:
strcpy(dest, src);

 dest: Pointer to the destination array where the content is to be copied.
 src: string which will be copied.

After copying the source string to the destination string, the strcpy() function returns a pointer to

the destination string.

Ex:

 strcpy(city,”Delhi”);// ie; Delhi is copied to the string city

Below programs illustrate the strlen(),strcpy() and strcat() function in C:

https://www.geeksforgeeks.org/strcat-vs-strncat-c/
https://www.geeksforgeeks.org/strcpy-in-c-cpp/

C Programming for Problem solving

10 Dept of CSE | PACE Mangalore

strcmp(): strcmp() is a built-in library function and is declared in <string.h> header file.
This function takes two strings as arguments and compare these two strings
lexicographically.
Syntax::
 f=strcmp(str1,str2);

In the above prototype, function srtcmp takes two strings as parameters and returns an

integer value based on the comparison of strings.

 strcmp() compares the two strings lexicographically means it starts comparison
character by character starting from the first character until the characters in both
strings are equal or a NULL character is encountered.

 If first character in both strings are equal, then this function will check the second
character, if this is also equal then it will check the third and so on

 This process will be continued until a character in either string is NULL or the
characters are unequal.

 If strings are equal then it will return 0 , otherwise nonzero
Below programs illustrate the strcmp() function in C:

Ex:

strcmp(name1,name2);

strcmp(name1,”John”);

strcmp(“RAM”,”ROM”);

https://www.geeksforgeeks.org/strcmp-in-c-cpp/

C Programming for Problem solving

11 Dept of CSE | PACE Mangalore

Write a C Program to find the length of string, copy the content of one string to other string,
concatenate two string and compare two strings without using built in functions

Program:
#include <stdio.h>
char s1[20],s2[20],s3[20];

/* Function to find string Length*/
int stringlen(char s1[])
{
int len=0,i;
for(i=0;s1[i]!='\0';i++)

len++;
return len;
}

/*Function to Compare string*/
void stringcmp(char s1[],char s2[])
{
int i=0,f=0;
while(s1[i]!='\0'||s2[i]!='\0')
{
if(s1[i]!=s2[i])
{

f=1; //srings are different
break;

}
i++;
}
if(f==0)

printf (" Strings are Equal\n"); Flow chart : for stringcmp()
else

printf (" Strings are Different\n");
}

/*Function to Concatinate strings*/
void stringcat(char a[],char b[])
{
int j,i;
i=stringlen(a);
for(j=0;b[j]!='\0';j++,i++)

a[i]=b[j];
a[i]='\0';
puts(a);
}

C Programming for Problem solving

12 Dept of CSE | PACE Mangalore

//Function to copy string
void stringcopy(char a[],char b[])

{

int i;

for(i=0;b[i]!='\0';i++)

a[i]=b[i];

a[i]='\0';

puts(a);

}

/* Main function*/
int main()
{
int n;
printf("Enter string1\n") ;
gets(s1); // Reading string1
printf("Enter string2\n") ;
gets(s2); //Reading string2
printf("string1 is:\n");
puts(s1); //Display String1
printf("string2 is: \n");
puts(s2); //Display String2
puts("Finding String length\n");
n=stringlen(s1); //Function call to find string length
printf ("length of string1=%d\n",n);
n=stringlen(s2); //Function call to find string length
printf ("length of string2=%d\n",n);
puts(" Comparing string1 and string2\n");
stringcmp (s1,s2);//Function call to Compare strings
puts("After Concatenation of string1 and string2\n");
stringcat(s1,s2);//Function call for concatenation of string
puts("after copying string1 to string3 , string3 is\n") ;
stringcopy(s3,s1);//Function call to copy the content of s1 to s3
return 0;
}

C Programming for Problem solving

13 Dept of CSE | PACE Mangalore

Basic Algorithms: Searching and Sorting
Searching:
Searching is the process of finding a given value position in a list of values. It decides whether a

search key is present in the data or not. It is the algorithmic process of finding a particular item in

a collection of items.

 Linear Search
 Binary Search

Linear Search:
It is one of the searching technique which is used to find whether a given number is present in an
array and if it is present then at what location it occurs. It is also known as sequential search.
It is straightforward and works as follows: We keep on comparing each element with the element
to search until it is found or the list ends.
Linear search is implemented using following steps...

 Step 1 - Read the search element from the user.
 Step 2 - Compare the search element with the first element in the list.

 Step 3 - If both are matched, then display "Given element is found!!!" and terminate the
function

 Step 4 - If both are not matched, then compare search element with the next element in the
list.

 Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.
 Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

 Example
 Consider the following list of elements and the element to be searched...

C Programming for Problem solving

14 Dept of CSE | PACE Mangalore



C Programming for Problem solving

15 Dept of CSE | PACE Mangalore

C Program for linear search(Demonstration of linear search)

Binary Search:
Binary Search is a type of searching algorithm. A searching algorithm means you find an item with
a particular value in a sorted sequence. Binary search is a type of searching algorithm which finds
an item by repeatedly halving the search space.

Explanation of Binary Search:
Binary Search: Steps on how it works:
To find the index of element key with a certain value:

1. Start with an array sorted in Ascending/descending order.
2. In each step: Pick the middle element of the array mid and compare it to key. If element

values are equal, then return index of mid. If key is greater than mid, then key must be in
right subarray. If key is less than mid, then key must be in the left subarray.

3. Repeat those steps on new subarray.

C Programming for Problem solving

16 Dept of CSE | PACE Mangalore

Search whether key =76 present or not in the array given below using binary search

algorithm

Yes key found at position 11

C Program for Binary Search:
#include<stdio.h>
#include<stdlib.h>
main()
{
 int arr[50],i,n,key,first,last,mid; // Declaring array and other variables
 printf("Enter size of array:");
 scanf("%d",&n);
 printf("\nEnter array element(ascending order)\n");
 for(i=0;i<n;++i)
 scanf("%d",&arr[i]); //Reading array elements
 printf("\nEnter the element to search:");
 scanf("%d",&key);
 //Binary search implementation
 first=0;
 last=n-1;
 while(first<=last) // searching in arrray from first to last
 {
 mid=(first+last)/2; // calculate mid
 if(key==arr[mid]) // key element found or not
 {
 printf("\nElement found at position %d",mid);
 exit(0); //Terminate the program
 }
 else if(key>arr[mid])
 first=mid+1; // searching only right side of mid
 else
 last=mid-1; //searching only left side of mid
 }
 printf("\nElement not found");
 }

C Programming for Problem solving

17 Dept of CSE | PACE Mangalore

Output:
Enter size of array: 3
Enter array element (ascending order)
1 2 3
Enter the element to search: 6
Element not found

Enter size of array: 5
Enter array element (ascending order)
1 2 33 41 55
Enter the element to search: 41
Element found at position 3

Differences between linear search binary search:

 A linear search scans one item at a time, without jumping to any item. In contrast, binary
search cuts down your search to half as soon as you find the middle of a sorted list.

 Time taken to search elements keep increasing as the number of elements is increased when
searching through linear process. But binary search compresses the searching period by
dividing the whole array into two half.

 Linear search does the sequential access whereas Binary search access data randomly.

 Input data needs to be sorted in Binary Search and not in Linear Search.

 Binary search is better and quite faster than linear search.

 Binary search is efficient for the larger array. If the amount of data is small, then linear search
is preferable because this searching process is fast when data is small.

Sorting:
Arranging element in a particular order is known as sorting. There are many technique or
algorithms used for sorting. Bubble sort and selection sort are the Examples for sorting
algorithms.

Bubble sort:
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent
elements if they are in wrong order.

Note:Refer class note for complete demonstration of bubble sort

C Programming for Problem solving

18 Dept of CSE | PACE Mangalore

How Bubble Sort Works?
1. Starting from the first index, compare the first and the second elements. If the first element is

greater than the second element, they are swapped.
Now, compare the second and the third elements. Swap them if they are not in order.
The above process goes on until the last element.

2. The same process goes on for the remaining iterations. After each iteration, the largest element

among the unsorted elements is placed at the end.

In each iteration, the comparison takes place up to the last unsorted element.

The array is sorted when all the unsorted elements are placed at their correct positions.

C Programming for Problem solving

19 Dept of CSE | PACE Mangalore

Program: Bubble Sort
#include <stdio.h>
main()
{
 int A[20], n, i, j, temp;
 printf("Enter number of elements\n");
 scanf("%d", &n);
 printf("Enter %d integers\n", n);
 for (i = 0; i < n; i++)
 scanf("%d", &A[i]);
 /* Bubble sort*/
 for (i = 0 ; i< n - 1; i++)
 {
 for (j = 0 ; j < n - i - 1; j++)
 {
 if (A[j] > A[j+1])
 {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 }
 }
 }

C Programming for Problem solving

20 Dept of CSE | PACE Mangalore

 printf("Sorted list in ascending order:\n");
 for (i = 0; i < n; i++)
 printf("%d\t", A[i]);

}
Output:
Enter number of elements
5
Enter 5 integers
6 2 5 0 1
Sorted list in ascending order:
0 1 2 5 6

Selection Sort:

First, we give the computer a list of unsorted numbers and store them in an array of memory cells.

To begin the sort, the computer divides the sorted and unsorted sections of the list by placing a marker
before the first number. To sort the numbers, the computer will repeatedly search the unsorted section
for the smallest number, swap this number with the first number in the unsorted section, and update the
sort marker.

To find the smallest number in the unsorted section, the computer must make six comparisons: (7 < 8),
(7 > 5), (5 > 2), (2 < 4), (2 < 6), and (2 > 3). After these comparisons, the computer knows that 2 is the
smallest number, so it swaps this number with 7, the first number in the unsorted section, and advances
the sort marker.

+
Now five more comparisons are needed to find the smallest number in the unsorted section: (8 > 5), (5 < 7),
(5 > 4), (4 < 6), and (4 > 3). After these comparisons, the computer swaps 3, the smallest number in the

unsorted section, with 8, the first number in the unsorted section, and advances the sort marker.

C Programming for Problem solving

21 Dept of CSE | PACE Mangalore

This time four comparisons are needed to determine that 4 is the smallest number in the unsorted section:
(5 < 7), (5 > 4), (4 < 6), and (4 < 8). After these comparisons, the computer swaps 4 with 5 and then

advances the sort marker.

After three more comparisons, the computer identifies 5 as the smallest unsorted number: (7 > 5), (5 < 6),

and (5 < 8). Then the computer swaps 5 with 7 and advances the sort marker.

This time only two comparisons are needed to determine that 6 is the smallest number: (7 > 6) and (6 < 8).

After these two comparisons, the computer swaps 6 with 7 and then advances the sort marker.

Now we only need a single comparison to find the right position for 7: (7 < 8). Since 7 is the smallest
number and it is also the first number in the unsorted section, the computer does not need to swap this

number. It only needs to advance the sort marker. Now there is only one number in the unsorted section, so

the list of numbers is sorted and the Selection Sort algorithm is complete.

Note: Refer Class note for more examples

C Programming for Problem solving

22 Dept of CSE | PACE Mangalore

Program : Selection Sort
#include <stdio.h>
main()
{
 int A[20], n, i, j, temp,min;
 printf("Enter number of elements\n");
 scanf("%d", &n);
 printf("Enter %d integers\n", n);
 for (i = 0; i < n; i++)
 scanf("%d", &A[i]);
//Selection sort
 for (i = 0; i < n-1; i++)
 {
 // Find the minimum element in unsorted array
 min = i;
 for (j = i+1; j < n; j++)
 if (arr[min] >arr[j])
 min = j;
 //Swap if required
 If(min!=i)
 {
 temp=A[i];
 A[i]=A[min];
 A[min]=temp];
 }
 }
 printf(“Sorted Array using selection sort\n”);
 for (i = 0; i < n; i++)
 printf("%d\t", A[i]);
}
Output:
Enter number of elements
5
Enter 5 integers
6 2 5 0 1
Sorted Array using selection sort
0 1 2 5 6
Difference between bubble sort and selection sort:

 Bubble sort is simplest sorting technique compare to selection sort
 In the bubble sort, each element and its adjacent element is compared and swapped if required. On the other hand,

selection sort works by selecting the element and swapping that particular element with the last element. The selected
element could be largest or smallest depending on the order i.e., ascending or descending. to selection sort

 Bubble sort is slower than selection sort
 Selection sort has improved efficiency compared to bubble sort

	 Example
	Binary Search: Steps on how it works:
	How Bubble Sort Works?

