
[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 1

MODULE 4
1. Write the syntax for declaring two dimensional arrays with suitable example.

A two dimensional array is declared as:

 data_type array_name[row_size][column_size];

Therefore, a two dimensional m x n array is an array that contains m x n data elements

and each element is accessed using two subscripts, i and j where i<=m and j<=n.

For example, if we want to store the marks obtained by 3 students in 5 different subjects,

then we can declare a two-dimensional array as

int marks[3][5];

A two-dimensional array called ‘marks’ is declared that has m(3) rows and n(5) columns.

The first element of the array is denoted by marks[0][0], second element as marks[0][1], and

so on. Here, marks[0][0] stores the marks obtained by the first student in the first subject,

marks[1][0] stores the marks obtained by the second student in the first subject, and so on.

2. Demonstrate the representation of 2D array in memory with a suitable example.

For example, if we want to store the marks obtained by 3 students in 5 different subjects,

then we can declare a two-dimensional array as

int marks[3][5];

A two-dimensional array called ‘marks’ is declared that has m(3) rows and n(5) columns.

The first element of the array is denoted by marks[0][0], second element as marks[0][1], and

so on. Here, marks[0][0] stores the marks obtained by the first student in the first subject,

marks[1][0] stores the marks obtained by the second student in the first subject, and so on.

The memory representation of above two dimensional array is shown below:

Row / Column Column 0 Column 1 Column 2 Column 3 Column 4

Row 0 marks[0][0] marks[0][1] marks[0][2] marks[0][3] marks[0][4]

Row 1 marks[1][0] marks[1][1] marks[1][2] marks[1][3] marks[1][4]

Row 2 marks[2][0] marks[2][1] marks[2][2] marks[2][3] marks[2][4]

Figure: Memory representation of two dimensional array for int marks[3][5];

If we initialize a two-dimensional array ‘marks’ as:

int marks[2][3] = {90, 87, 78, 68, 62, 71};

Then the memory representation is shown:

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 2

3. Explain how a single row can be passed into a 2D array with an example.

A row of a two-dimensional array can

be passed by indexing the array name

with the row number. When we send

a single row of a two-dimensional

array, then the called function receives

a one-dimensional array. Figure illustrates

how a single row of a two-dimensional array

is passed to the called function.

4. With a neat diagram, Explain three dimensional array. Write a C program to read and

display 2x2x2 array.

Three dimensional array:

A three dimensional m1 x m2 x m3 array is

a collection of m1 * m2 * m3 elements.

Figure shows a three dimensional array

having three pages, four rows and 2 columns.

Program: #include <stdio.h>

int main ()

{

int i, j, mat[3][3], t_mat [3][3];

printf ("Enter the elements of the matrix: \n");

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

{

scanf ("%d", &mat[i][j]);

} }

printf ("The elements of the matrix are: \n ");

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 3

for (i=0; i<3; i++)

{

printf("\n");

for (j=0; j<3; j++)

printf ("\t %d", mat[i][j]);

}

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

t_mat[i][j] = mat[j][i] ;

}

printf (" The elements of the transposed matrix are: \n ");

for (i=0; i<3; i++)

{

printf("\n");

for (j=0; j<3; j++)

printf ("\t %d", t_mat[i][j]);

}

return 0;

}

5. What are strings? Mention reading strings & writing strings along with their syntax.

In C programming, a string is a sequence of characters terminated with a null character.

This means that, after the last character, a null character (‘\0’) is stored to signify the end

of the character array.

For example, char str[] = “Hello”; This will be stored as

Reading Strings: If we declare a string by writing

char str [100];

Then str can be read by using three ways:

1. using scanf() function

H e l l o \0

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 4

2. using gets() function

3. using getchar(), getch() or getche() function repeatedly

Stings can be read using scanf() by writing

scanf("%s", str);

The main drawback with this function is that the function terminates as soon as it finds a

blank space. For example, if the user enters ‘Hello World’, then str will contain only ‘Hello’.

This is because the moment a blank space is encountered, the string is terminated by the

scanf() function.

The field width can be specified to indicate the maximum number of characters that can be

read in.

The string can be read by using gets() function. The string can be read by writing

gets(str);

gets() is a simple function that overcomes the drawbacks of the scanf() function. The gets()

function takes the starting address of the string which will hold the input. The string

inputted using gets() is automatically terminated with a null character.

The string can also be read by calling the getchar() function repeatedly to read a sequence

of single characters (unless a terminating character is entered) and simultaneously storing

it in a character array.

Writing Strings: Strings can be displayed on the screen using three ways:

1. using printf() function

2. using puts() function

3. using putchar() function repeatedly

A string can be displayed using printf() by writing

printf("%s", str);

The conversion character ‘s’ is used to output a string. The width and precision

specifications along with %s can also be included. The width specifies the minimum output

field width. If the string is short, extra space is either left padded or right padded. The

precision specifies the maximum number of characters to be displayed. If the string is long,

the extra characters are truncated.

For example,

printf("%5.3s", str);

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 5

The above statement would print only the first three characters in a total field of five

characters. Also these three characters are right justified in the allocated width. To make

the string left justified, we must use a minus sign. For example,

printf("%-5.3s", str);

The next method is by using puts() function. The string can be displayed by writing

puts(str);

puts() is a simple function that overcomes the drawbacks of the printf() function. The puts(

) function writes a line of output on the screen. It terminates the line with a newline

character ('\n'). It returns an EOF (-1) if an error occurs and returns a positive number on

success.

The strings can also be written by calling the putchar() function repeatedly to print a

sequence of single characters.

6. Write a C program to read and display 3 x 3 matrix.

#include <stdio.h>

int main ()

{

int i, j, mat[3][3];

printf ("Enter the elements of the matrix: \n");

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

{

scanf ("%d", &mat[i][j]);

}

}

printf ("The elements of the matrix are: \n ");

for (i=0; i<3; i++)

{

printf ("\n");

for (j=0; j<3; j++)

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 6

printf ("\t %d", mat[i][j]);

}

return 0;

}

7. Write a program to transpose the elements of a 3 x 3 matrix.

#include <stdio.h>

int main ()

{

int i, j, mat[3][3], t_mat [3][3];

printf ("Enter the elements of the matrix: \n");

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

{

scanf ("%d", &mat[i][j]);

}

}

printf ("The elements of the matrix are: \n ");

for (i=0; i<3; i++)

{

printf("\n");

for (j=0; j<3; j++)

printf ("\t %d", mat[i][j]);

}

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

t_mat[i][j] = mat[j][i] ;

}

printf (" The elements of the transposed matrix are: \n ");

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 7

for (i=0; i<3; i++)

{

printf("\n");

for (j=0; j<3; j++)

printf ("\t %d", t_mat[i][j]);

}

return 0;

}

8. Write a C program to implement matrix multiplication and validate the rules of

multiplication.

#include<stdio.h>

#include<stdlib.h>

int main()

{

int r1, c1, r2, c2, row, col, k, a[10][10],b[10][10],m[10][10];

printf ("Enter the order of matrix A\n");

scanf ("%d %d",&r1, &c1);

printf ("Enter order of matrix B\n");

scanf ("%d %d", &r2, &c2);

if (c1 != r2)

{

printf ("Matrix Multiplication is not possible \n");

exit (0);

}

printf ("Enter the elements into matrix A\ n");

for (row=0; row<r1; row++)

{

for (col=0; col<c1; col++)

scanf ("%d" , &a[row][col]);

}

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 8

printf ("Enter the elements into matrix B \n");

for (row=0; row<r2; row++)

{

for(col=0; col<c2; col++)

scanf ("%d", &b[row][col]);

}

for(row=0; row<r1; row++)

{

for(col=0; col<c2; col++)

{

m[row][col]=0;

for(k=0; k<c1; k++)

{

m[row][col] = m[row][col] + a[row][k] * b[k][col];

} } }

printf (" The elements of Product of Matrix A and B is: \n");

for(row=0; row<r1; row++)

{

for (col=0; col<c2; col++)

printf ("%3d", m[row][col]);

}

printf ("\n");

}

return 0;

}

9. Develop a C program to sort the given set of N numbers using bubble sort.

#include<stdio.h>

int main()

{

int i, j, N, temp, a[20];

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 9

printf ("Enter the value of N: \n");

scanf ("%d", &N);

printf ("Enter the numbers in unsorted order:\n");

for (i=0; i<N; i++)

scanf (" %d ", &a[i]);

// bubble sort logic

for (i=0; i<N; i++)

{

for (j=0; j<(N-i)-1; j++)

{

if (a[j]>a[j+1])

{

temp = a[j];

a[j] = a[j+1];

a[j+1] = temp;

}

}

}

printf ("The sorted array is \n");

for (i=0; i<N; i++)

{

printf ("%d\n", a[i]);

}

return 0;

}

10. Write a program to count vowels and consonants in a string.

#include<stdio.h>

#include<string.h>

int main()

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 10

{

char s[100];

int i, vowels=0, consonants=0, len=0;

printf ("Enter the string: ");

gets (s);

len = strlen(s);

for (i=0; i<len; i++)

{

if (s[i] >= ‘A’ && s[i] <= ‘Z’) || (s[i] >= ‘a’ && s[i] <= ‘z’)

{

if (s[i] == ‘a’ || s[i] == ‘e’ || s[i] == ‘i’ || s[i] == ‘o’ || s[i] == ‘u’ || s[i] == ‘A’ || s[i]

== ‘E’ || s[i] == ‘I’ || s[i] == ‘O’ || s[i] == ‘U’)

vowels++;

else

consonants++;

}

}

printf (“ Vowels in the string is = %d”, vowels);

printf (“ Consonants in the string is = %d”, consonants);

return 0;

}

11. Write a C program to find the sum of diagonal elements of a matrix.

##include<stdio.h>

int main()

{

int r, c, i, j, a[10][10], sum;

printf ("Enter the order of the matrix \n");

scanf ("%d %d", &r, &c);

if (r != c)

{

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 11

printf ("Not a square matrix \n");

exit (0);

}

printf ("Enter the elements of matrix \ n");

for (i=0; i<r; i++)

{

for (j=0; j<c; j++)

scanf ("%d" , &a[i][j]);

}

}

for (i=0; i<r; i++)

{

sum = sum + a[i][i];

}

printf (“ The sum of diagonal elements is %d”, sum);

return 0;

}

12. Write program to generate Pascal’s triangle.

#include <stdio.h>

#include <conio.h>

int main ()

{

int arr[7][7] = { 0 };

int row=2, col, i, j;

arr[0][0] = arr[1][0] = arr[1][1] = 1;

while (row < 7)

{

arr[row][0] = 1;

for (col = 1; col <= row; col++)

arr[row][col] = arr[row-1][col-1] + arr[row-1][col];

[INTRODUCTION TO C PROGRAMMING - BESCK104E] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 12

row++;

}

for(i=0;i<7;i++)

{

printf("\n");

for (j=0; j<=i; j++)

printf ("\t %d", arr[i][j]);

}

return 0;

}

13. Write a program to print following pattern.

#include <stdio.h>

int main ()

{

int i, p;

char str[] = "HELLO";

printf ("\n");

for (i=0; i<5; i++)

{

p = i+1;

printf ("\n % -5 . * s", p, str);

}

printf ("\n");

for (i=4; i>=0; i--)

{

p = i+1;

printf ("\n % -5 . * s", p, str);

}

return 0;

}

