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1. Explain briefly the mechanism of conduction Convection and radiation heat transfer (1a,06 

Dec2013/Jan2014, 1a,03,Dec16/Jan17,1b,06,June/July18) 

2. State the laws governing three basic modes of heat transfer  (1a  06   June/July 15, Dec 14/Jan 

15) 

3 State and explain the governing laws of conduction, convection and radiation heat transfer 

modes (1a,09,June/July2018)(1a,06,Dec18/Jan19,15 scheme,1a,10, Dec15/Jan16) 

4.  Derive an the general 3-D heat conduction equation in Cartesian coordinate system,state 

assumption made  and hence Laplace and Poisson equations   (1a. 10   Dec 2015/Jan 2016,1b,08, 

June/July14, 1b,08,June/July16,1b,08,Dec16/Jan17, 1c,8,Dec18/jan19,2a,08,June/July18 

15ME63, 2a,08,Dec18/Jan19,15 scheme) 

5  Write down 3 dimensional conduction equation in Cartesian coordinates. Explain meaning of 

each term   06 June/July 2013, Dec 14/Jan 15 

6  What is thermal diffusivity? Explain its importance in heat conduction problems (1a, 

04,June/July 2014) 

7. Define thermal diffusivity  (1a, 04 Dec17/Jan18) 

8. Describe different types of boundary conditions applied to Heat conduction problems (1b, 

04,June/July 2014) 

9.  What do you mean by initial conditions and boundary conditions I, II  and III kind    06 June/July 

2013,1a, June/July18) 

10. What do you mean by boundary condition of one two and three kind (1b, 06 DEC18/Jan19, 

1a,06,June/July16) 

11. Explain the three types of boundary conditions used in conduction heat transfer (1a,06 June/July 

17) 

12. With sketches write down mathematical representation of three commonly used different types 

of boundary conditions for one dimensional heat equation in rectangular coordinates (1b,08 

Dec13/Jan14) 

13. Write a note on Thermal contact resistance ( 1b,3, June/July 2018) 

14 A plate of thickness L whose one side is insulated and the other side is maintained at a 

temperature T1 is exchanging heat by conduction to the surrounding area at a temperature T2 

with atmospheric air being the outside medium. Write mathematical formulation for one 

dimensional steady state heat transfer without heat generation.  (1c,06   Dec 13/Jan14) 

15 Consider a one dimensional steady state heat conduction in a plate with constant thermal 

conductivity in a region 0 ≤ 𝑥 ≤ 𝐿.  A plate is exposed to uniform heat flux q W/m2-K at x=0 and 
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dissipates heat Convection at X=L with heat transfer coefficient h in the surrounding air at 𝑇∞. 

Write the mathematical formulation   of this problem for the determination of one dimensional 

steady state temperature distribution within the wall  (1c,04 June/July14) 

 

Heat Transfer Mechanisms:- 

 There are modes of heat transfer- (i) conduction, (ii) convection and (iii) radiation 

Conduction 

In solids heat transfer takes place due to conduction.Conduction is the transfer of heat energy from one 

molecule to other adjacent molecule as a result of   i)movement of free valence electrons from Higher 

energetic molecules of a substance to  adjacent lower energetic molecules in the direction of decreasing 

temperature  ii) vibration of molecules in the lattice 

Fourier Law of Conduction 

Conduction is governed by Fourier Law of Heat conduction 

It states that the rate of heat transfer by conduction is directly proportional to area normal to the 

direction of heat transfer and temperature gradient in that direction 

𝑄𝑥 ∝ −𝐴
𝑑𝑇

𝑑𝑥
 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
   

Qx is the rate of heat transfer in positive x-direction through area, A is the Area normal to the direction 

of heat transfer, 
𝑑𝑇

𝑑𝑥
 is the temperature gradient and it is negative in positive x direction and k is the 

constant of proportionality and is a material property called “thermal conductivity”. Therefore negative 

sign has to be introduced in equation to make Qx positive in the direction of decreasing temperature 

Convection 

When a fluid moves over a solid body or inside a channel while temperature difference exists between 

solid surface and fluid , then heat transfer between the fluid and surface takes place due to movement 

of fluid molecules relative to the surface. This type of hat transfer due to motion of molecules is called 

convection. 

In convection the total heat transfer is due to random motion of the fluid molecules together with the 

bulk motion of the fluid, the major contribution coming from the latter mechanism. Therefore bulk 

motion of the fluid is a necessary condition for convection heat transfer to take place in addition to the 

temperature gradient in the fluid. 
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If the motion of molecules is set by buoyancy effects due to the density difference caused by 

temperature difference in the fluid , the heat transfer is termed as Natural convection 

 

If the motion of molecules in the fluid  is set by external agency like fan or pump, the heat transfer is 

called as Forced convection 

Law for Convection Heat Transfer  

It is governed by Newton’s Law which states that Heat flux directly proportional to temperature 

difference between the surface and the temperature of bulk fluid 

𝑞 ∝ ∆𝑇;     𝑞 = ℎ∆𝑇 𝑊/𝑚2 where h is the surface heat transfer coefficient due to convection either due 

to forced convection or natural convection 

𝑄 = ℎ𝐴∆𝑇  watts 

𝑄 = ℎ𝐴(𝑇𝑤 − 𝑇𝑓)  Watts ie heat is transferred from the surface to fluid) (if 𝑇𝑓 < 𝑇𝑤)) 

𝑄 = ℎ𝐴(𝑇𝑓 − 𝑇𝑤)  Watts ie heat is transferred from the fluid to surface to fluid (if 𝑇𝑠𝑓 > 𝑇𝑤) 

Radiation: 

Thermal radiation is the energy emitted by matter (solid, liquid or gas) by virtue of its temperature. This 

energy is transported by electromagnetic waves (or alternatively, photons).While the transfer of energy 

by conduction and convection requires the presence of a material medium, radiation does not require 

any medium and it occurs most effectively in vacuum. 

Law of Radiation: 

Radiation Heat Transfer is governed by the Stefan-Boltzmans Law. 

Stefan-Boltzman’s law of radiation states that the emissive power of a black body is proportional to the 

fourth power of the absolute temperature of the body. Therefore if Eb is the emissive power of a black 

body at temperature T 0K, then 

𝐸𝑏 α T 4;   𝐸𝑏 = 𝜎𝑇4  where σ is constant of proportionality and it is Stefan Boltzman constant =5.67x10-8   

Emissive power of any body 𝐸 =∈ 𝜎𝑇4 wh ere ∈ is the Emissivity of body 

Difference between Conduction ,Convection and Radiation 

Conduction Convection Radiation 

Heat transfer takes place due to 

movement of free valence 
electrons from one molecule to 

Heat transfer takes place 
between the surface and fluid 

due to movement of molecules 

Heat transfer takes place in 

vacuum due to emission 
properties of materials in the 
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other adjacent molecule  
whenever there is difference in 
energy level between molecules   

set by buoyancy force caused by 
density difference (Natural 
Convection) Or due to external 
agency like fan , pump  

form of electromagnetic waves 
(continuous) or Photons 
(Discreet) 

It takes place in solids It takes place in fluids  No media required  

It is Governed by Fourier law of 
Heat Conduction 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
  Watts  

 

This is Governed by Newton Law 
of Convection 

𝑄 = ℎ𝐴∆𝑇 𝑊𝑎𝑡𝑡𝑠 

This is Governed by Stefan Law 
for Radiation 
𝐸𝑏 = 𝜎𝑇4 Watts per m2 

 

Thermal Conductivity 

Thermal Conductivity of material is defines as the property of material by virtue of which it allows the 

heat flow through a body  

If it does not vary with temperature it is called as uniform thermal conductivity 

If it varies uniformly varies with temperature it is called as uniformly variable thermal conductivity 

 

Fourier Law of Heat Conduction in Slab  

 

1. For constant thermal conductivity and Area 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
 

𝑄 𝑑𝑥 = −𝑘𝐴 𝑑𝑇 

Integrating Above equation 

𝑄 ∫ 𝑑𝑥
𝐿

0
= −𝑘𝐴 ∫ 𝑑𝑇

𝑇2

𝑇1
 

𝑄(𝐿 − 0) = −𝑘𝐴(𝑇2 − 𝑇1) 

𝑄𝐿 = 𝑘𝐴(𝑇1 − 𝑇2) 

𝑄 =
𝑘𝐴(𝑇1 − 𝑇2)

𝐿
 

𝑄 =
(𝑇1 − 𝑇2)

𝐿
𝑘𝐴

 

L 

 
 X=0 X=L 

Thermal conductivity =K 

T1 
T2 
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According to Electrical theory 

𝐼 =
𝑉

𝑅
 

Hence, Heat transfer can be treated  Analogous to current  

Hence Temperature difference  (𝑇1 − 𝑇2) called as thermal potential 

 
𝐿

𝑘𝐴
 is termed as thermal resistanceType equation here. 

T1  T2 

                    R= 
𝐿

𝑘𝐴
 

Fourier Law of Heat Conduction in in cylinder 

 

 

 

 

 

 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝑘2𝜋𝑟𝐿
𝑑𝑇

𝑑𝑟
 

𝑄 
𝑑𝑟

𝑟
= −𝑘2𝜋𝐿 𝑑𝑇 

Integrating Above equation 

𝑄 ∫
𝑑𝑟

𝑟

𝑟2

𝑟1

= −2𝜋𝐿𝐾 ∫ 𝑑𝑇
𝑇2

𝑇1

 

𝑄(𝑙𝑛 𝑟)𝑟1

𝑟2 = −2𝜋𝐿𝐾(𝑇2 − 𝑇1) 

𝑄(𝑙𝑛 𝑟2 − 𝑙𝑛 𝑟1) = 2𝜋𝐿𝐾(𝑇1 − 𝑇2) 

𝑄𝑙𝑛
𝑟2

𝑟1
= 2𝜋𝐿𝐾(𝑇1 − 𝑇2) 

R2 

R1 

T1 

T2 
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𝑄 =
2𝜋𝐿𝐾(𝑇1 − 𝑇2)

𝑙𝑛
𝑟2
𝑟1

 

𝑄 =
(𝑇1 − 𝑇2)

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾

 

According to Electrical theory 

𝐼 =
𝑉

𝑅
 

Hence, Heat transfer can be treated  Analogous to current  

Hence Temperature difference  (𝑇1 − 𝑇2) called as thermal potential 

  
𝑙𝑛

𝑟2
𝑟1

2𝜋𝐿𝐾
  is termed as thermal resitance 

    T1 T2 

              𝑅 =
𝑙𝑛

𝑟2
𝑟1

2𝜋𝐿𝐾
 

Fourier Law of Heat Conduction in in sphere 

 

 

 

 

 

 

 

 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝑘4𝜋𝑟2
𝑑𝑇

𝑑𝑟
 

R1

1 
R2 

T1 

T2 
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𝑄 
𝑑𝑟

𝑟2
= −𝑘4𝜋 𝑑𝑇 

Integrating Above equation 

𝑄 ∫
𝑑𝑟

𝑟2

𝑟2

𝑟1

= −4𝜋𝐾 ∫ 𝑑𝑇
𝑇2

𝑇1

 

𝑄 (
𝑟−2+1

−2 + 1
)

𝑟1

𝑟2

= −4𝜋𝐾(𝑇2 − 𝑇1) 

−𝑄(𝑟−2+1)𝑟1

𝑟2 = 4𝜋𝐾(𝑇1 − 𝑇2) 

−𝑄 (
1

𝑟
)

𝑟1

𝑟2

= 4𝜋𝐾(𝑇1 − 𝑇2) 

−𝑄 (
1

𝑟2
−

1

𝑟1
) = 4𝜋𝐾(𝑇1 − 𝑇2) 

𝑄 (
1

𝑟1
−

1

𝑟2
) = 4𝜋𝐾(𝑇1 − 𝑇2) 

 

𝑄 =
4𝜋𝐾(𝑇1 − 𝑇2)

(
1
𝑟1

−
1
𝑟2

)
 

𝑄 =
(𝑇1 − 𝑇2)

(
1
𝑟1

−
1
𝑟2

)

4𝜋𝐾

 

 

According to Electrical theory 

𝐼 =
𝑉

𝑅
 

Hence, Heat transfer can be treated  Analogous to current  

Hence Temperature difference  (𝑇1 − 𝑇2) called as thermal potential 

 

(
1

𝑟1
−

1

𝑟2
)

4𝜋𝐾
  is termed as thermal resitance 
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T1 T2 

                       
(

1

𝑟1
−

1

𝑟2
)

4𝜋𝐾
  

 

2. For Uniformly variable  thermal conductivity 𝑘 = 𝑘0(1 + 𝛼𝑇) and Constant Area 

T1                      T2 

      

 

 

x=0 x=L 

 L 

𝑄 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
 

𝑄 𝑑𝑥 = −𝑘0(1 + 𝛼𝑇)𝐴 𝑑𝑇 

𝑄 ∫ 𝑑𝑥
𝐿

0

= −𝑘0𝐴 ∫ (1 + 𝛼𝑇)𝑑𝑇
𝑇2

𝑇1

 

𝑄(𝐿 − 0) = −𝑘0𝐴 (𝑇 +
𝛼𝑇2

2
)

𝑇1

𝑇2

 

𝑄𝐿 = 𝑘0𝐴 (𝑇 +
𝛼𝑇2

2
)

𝑇2

𝑇1

 

𝑄𝐿 = 𝑘0𝐴 ((𝑇1 − 𝑇2) +
𝛼(𝑇1

2 − 𝑇2
2)

2
) 

𝑄𝐿 = 𝑘0𝐴 ((𝑇1 − 𝑇2) +
𝛼(𝑇1 − 𝑇2)(𝑇1 + 𝑇2)

2
) 

𝑄𝐿 = 𝑘0𝐴(𝑇1 − 𝑇2) (1 +
𝛼(𝑇1 + 𝑇2)

2
) 

𝑄𝐿 = 𝑘0𝐴(𝑇1 − 𝑇2)(1 + 𝛼𝑇𝑚) 
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𝑄 =
𝑘0(1 + 𝛼𝑇𝑚)𝐴(𝑇1 − 𝑇2)

𝐿
 

𝑄 =
𝑘𝑚𝐴(𝑇1 − 𝑇2)

𝐿
 

𝑄 =
(𝑇1 − 𝑇2)

𝐿
𝑘𝑚𝐴

 

𝐿

𝑘𝑚𝐴
 is called as thermal resistance 

3D Heat Conduction Equation in Cartesian 

Coordinates

 

let us consider a volume element of the solid of dimensions dx, dy dz in x y and z direction respectively 

According to heat balance 

𝑄𝑥 + 𝑄𝑦 + 𝑄𝑧 + 𝑄𝑔 = 𝑄𝑥+𝑑𝑥 + +𝑄𝑧+𝑑𝑧 + ∆𝐸 

(𝑄𝑥 − 𝑄𝑥+𝑑𝑥) + (𝑄𝑦 − 𝑄𝑦+𝑑𝑦) + (𝑄𝑧 − 𝑄𝑧+𝑑𝑧) + 𝑄𝑔 = ∆𝐸 

𝑄𝑥+𝑑𝑥 = 𝑄𝑥 +
𝜕𝑄

𝜕𝑥
𝑑𝑥 

𝑄𝑥 − 𝑄𝑥+𝑑𝑥 = −
𝜕𝑄

𝜕𝑥
𝑑𝑥 

dx 

dy 

dz 

     Qx 

Qx + dx 

Qz    Qy 

x 

y 

z 

 Conduction heat transfer across the six faces of a volume element 
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𝑄𝑥 = −𝑘𝑥𝐴
𝜕𝑇

𝜕𝑥
 

𝑄𝑥 = −𝑘𝑥𝑑𝑦𝑑𝑧
𝜕𝑇

𝜕𝑥
 

𝜕𝑄

𝜕𝑥
𝑑𝑥 =

𝜕

𝜕𝑥
(−𝑘𝑥𝑑𝑦𝑑𝑧

𝜕𝑇

𝜕𝑥
) 𝑑𝑥 

𝜕𝑄

𝜕𝑥
𝑑𝑥 = −

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) 𝑑𝑥𝑑𝑦𝑑𝑧 

−
𝜕𝑄

𝜕𝑥
𝑑𝑥 = +

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) 𝑑𝑥𝑑𝑦𝑑𝑧 

Hence,  

𝑄𝑥 − 𝑄𝑥+𝑑𝑥 = +
𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) 𝑑𝑥𝑑𝑦𝑑𝑧 

Similarly  

𝑄𝑦 − 𝑄𝑦+𝑑𝑦 = +
𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑄𝑧 − 𝑄𝑧+𝑑𝑧 = +
𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑄𝑔 = 𝑞′′′ 𝑑𝑥𝑑𝑦𝑑𝑧 

Change Internal Energy ∆𝐸 = 𝑚𝐶
𝜕𝑇

𝜕𝜏
 

 ∆𝐸 = 𝜌𝑉𝐶
𝜕𝑇

𝜕𝜏
 

∆𝐸 = 𝜌𝑑𝑥𝑑𝑦𝑑𝑧𝐶
𝜕𝑇

𝜕𝜏
 

(𝑄𝑥 − 𝑄𝑥+𝑑𝑥) + (𝑄𝑦 − 𝑄𝑦+𝑑𝑦) + (𝑄𝑧 − 𝑄𝑧+𝑑𝑧) + 𝑄𝑔 = ∆𝐸 

+
𝜕

𝜕𝑥
(𝑘𝑦

𝜕𝑇

𝜕𝑥
) 𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) 𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑞′′′ 𝑑𝑥𝑑𝑦𝑑𝑧 =  𝜌𝑑𝑥𝑑𝑦𝑑𝑧𝐶

𝜕𝑇

𝜕𝜏
 

𝜕

𝜕𝑦
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) + 𝑞′′′  =  𝜌𝐶

𝜕𝑇

𝜕𝜏
 

If material is isotropic 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘 

𝑘
𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) + 𝑘

𝜕

𝜕𝑦
(

𝜕𝑇

𝜕𝑦
) + 𝑘

𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) + 𝑞′′′  =  𝜌𝐶

𝜕𝑇

𝜕𝜏
 



Dr Abdul Sharief Page 11 
 

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) +

𝑞′′′

𝑘
 =

 𝜌𝐶

𝑘
 
𝜕𝑇

𝜕𝜏
 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

𝑞′′′

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝜏
 

Where 𝛼 is defined as thermal diffusivity =
𝑘

 𝜌𝐶
 

If there is no Heat generation 3D equation reduces as given below 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
=

1

𝛼

𝜕𝑇

𝜕𝜏
 

If there is no Heat generation and steady state 3D equation reduces as given below 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
= 0 

Unsteady with no heat generation 3D equation reduces to 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
=

1

𝛼

𝜕𝑇

𝜕𝜏
 

For 1D steady state with no heat generation governing equation reduces to  

𝑑

𝑑𝑥
(𝑘

𝑑𝑇

𝑑𝑥
) = 0 

If K is constant  

𝐾
𝑑2𝑇

𝑑𝑥2
= 0;                          

 𝑑2𝑇

𝑑𝑥2
= 0 

Boundary and Initial Conditions 

Initial conditions specifies temperature distribution at the origin of time coordinate ie 𝜏 = 0 

The boundary condition specifies thermal condition at the boundary surfaces of the region. Boundary 

conditions normally encountered in practice are, At the boundary surface I)  distribution of temperature 

may be specified – Boundary condition of first Kind ,  ii) distribution of heat flux may be specified – 

Boundary condition of second  Kind , iii)heat transfer by convection from the boundary surface into 

ambient or vice versa may be specified with known heat transfer coefficient – Boundary condition of 

third kind  
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2.4.1. Specified Temperatures at the Boundary:- Consider a plane wall of thickness L whose outer 

surfaces are maintained at temperatures T0 and TL as shown in Fig.2.6. For one-dimensional unsteady 

state conduction the boundary conditions can be written as                

  

 𝑑2𝑇

𝑑𝑥2
= 0 

Boundary conditions are 

(i) at x = 0, T(0,t) = T0 ; (ii) at x = L, T(L,t) = TL. 

 

Consider another example of a rectangular plate as shown in Fig. The boundary conditions for the four 

surfaces to determine two-dimensional steady state temperature distribution T(x,y) can be written as 

follows. 

 

(i) at x = 0, T(0,y) =  Ψ(y) ; (ii) at y = 0, T(x,0) = T1 for all values of y 

 

(iii) at x = a, T(a,y) = T2 for all values of y; (iv) at y = b, T(x,b) = φ(x) 

 

2.4.2. Specified heat flux at the boundary:-  

x 

  L 

TL T0 

T(x,t) 

 Boundary condition  of First Kind 

a  

x 

y 

a 

b 

T = φ(x) 

T1 

  

T=Ψ(y

) 

T2 

  T(x,y) 
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Consider a plane wall of thickness L whose outer surfaces are maintained at  𝑞0𝑎𝑡 𝑥 = 0and TL as 

shown in Fig. For one-dimensional unsteady state conduction the boundary conditions can be 

written as      

Governing equation           

At 𝑥 = 0, 𝑞0 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
  and 𝑥 = 𝐿,    T(L, τ)  =  TL 

 

 

Consider a rectangular plate as shown in Fig. 2.8 and whose boundaries are subjected to the prescribed 

heat flux conditions as shown in the figure. Then the boundary conditions can be mathematically 

expressed as follows. 

 

x 

  L 

TL q0 

T(x,t) 

 Boundary condition of second Kind  
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(i) at x = 0, − k (∂T / ∂x)|x = 0  = q 0 for 0 ≤ y ≤ b ; 
 

(ii) at y = 0 , (∂T / ∂y)|y = 0  = 0 for  0 ≤ x ≤ a ; 
 

(iii) at x = a,  k (∂T / ∂x)|x = a  = q a  for 0 ≤ y ≤ b ; 
 

(iv) at y = b, − k (∂T / ∂y)|y = b  = 0 for  0 ≤ x ≤ a ; 
 

Boundary surface subjected to convective heat transfer:- Fig. 2.9 shows a plane wall whose outer 

surfaces are subjected to convective boundary conditions.The surface at x = 0 is in contact with a fluid 

which is at a uniform temperature Ti and the surface heat transfer coefficient is hi. Similarly the other 

surface at x = L is in contact with another fluid at a uniform temperature T0 with a surface heat transfer 

coefficient h0. This type of boundary condition is encountered in heat exchanger wherein heat is 

transferred from hot fluid to the cold fluid with a metallic wall separating the two fluids. This type of 

boundary condition is normally referred to as the boundary condition of third kind. The mathematical 

representation of the boundary conditions for the two surfaces of the plane wall can be written as 

follows. 

 

(i) at x = 0, qconvection = q conduction; i.e., hi[Ti − T|x = 0 ] = − k(dT / dx)|x = 0 

 

    a 

b 

x 

y 

 q0 q a 

     q b 

insulated 

T(x,y) 

               Prescribed heat flux boundary conditions 
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(ii) at x = L,  − k(dT / dx)|x = L = h0 [T|x = L − T0] 

 

 

2.4.4.Radiation Boundary Condition:Fig. 2.10 shows a plane wall whose surface at x =L is having an 

emissivity ‘ε’ and is radiating heat to the surroundings at a uniform temperature Ts. The mathematical 

expression for the boundary condition at x = L can be written as follows: 

 

x 

  L 

 

 

T(x) 

Fig. 2.9: Boundaries subjected to convective heat transfer           

 for a plane wall             

 

 

 

 

 

 

   

 

 
Surface in contact with fluid 

at T0  with surface heat 

transfer coefficient h0 

Surface in contact with fluid at 

Ti  with surface heat transfer 

coefficient h i 
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(i) at x = L, qconduction = qradiation ; i.e., − k (dT / dx)| x = L = σ ε [( T| x = L)4 − Ts 4] 
 

In the above equation both T| x = L  and Ts should be expressed in degrees Kelvin 

Temperature Distribution in ID heat flow for slab with constant thermal conductivity 

𝑑

𝑑𝑥
(𝑘

𝑑𝑇

𝑑𝑥
) = 0                                                                                  T1                        T2 

If K is constant  

𝐾
𝑑2𝑇

𝑑𝑥2
= 0;                          

 
 𝑑2𝑇

𝑑𝑥2
= 0 

Integrating above equation                                             x=0                       x=L 

𝑑𝑇

𝑑𝑥
= 𝐶1  ; 𝑑𝑇 = 𝐶1𝑑𝑥 

Integrating again  

𝑇 = 𝐶1𝑥 + 𝐶2---A 

Boundary conditions are i)  𝑥 = 0 , 𝑇 = 𝑇1𝑎𝑛𝑑 𝑖𝑖) 𝑥 = 𝐿 , 𝑇 = 𝑇2 

Boundary condition i) in A  

x 

  L 

 

 

T(x,t) 

Fig. 2.10: Boundary surface at x = L subjected to radiation heat transfer           

 for a plane wall             

 

 

 

 

 

 

   

 

 
Surface with emissivity ε is 

radiating heat to the 

surroundings at Ts 0K 

 

L 



Dr Abdul Sharief Page 17 
 

𝑇1 = 0 + 𝐶2;  𝐶2 = 𝑇1 

ii) in A 

𝑇2 = 𝐶1𝐿 + 𝐶2 

𝑇2 = 𝐶1𝐿 + 𝑇1 

𝑇2 − 𝑇1

𝐿
= 𝐶1 

𝑇 =
𝑇2 − 𝑇1

𝐿
𝑥 + 𝑇1 

Above is the temperature distribution equation 

Rate of Heat Transfer  

𝑄 = −𝐾𝐴
𝑑𝑇

𝑑𝑥
 

𝑄 = −𝐾𝐴𝐶1 

𝑄 = −𝐾𝐴
𝑇2 − 𝑇1

𝐿
 

𝑄 =
𝐾𝐴(𝑇1 − 𝑇2)

𝐿
 

Temperature Distribution in ID heat flow for cylinder  with constant thermal conductivity 

𝑑

𝑑𝑟
(𝑘𝑟

𝑑𝑇

𝑑𝑟
) = 0                                                                                 

If K is Constant  

𝑘
𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) = 0 

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) = 0 

Integrating above equation 

𝑟
𝑑𝑇

𝑑𝑟
= 𝐶1;                                       

𝑑𝑇

𝑑𝑟
=

𝐶1

𝑟
 

𝑑𝑇 = 𝐶1

𝑑𝑟

𝑟
 

Integrating above equation 

𝑇 = 𝐶1𝑙𝑛𝑟 + 𝐶2 ---------A 

R2 

R1 

T1 

T2 
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Boundary conditions are 𝑖) 𝑎𝑡 𝑟 = 𝑟1, 𝑇 = 𝑇1 𝑖𝑖) 𝑎𝑡 𝑟 = 𝑟2, 𝑇 = 𝑇2 

𝑖) 𝑖𝑛 𝐴 

𝑇1 = 𝐶1𝑙𝑛𝑟1 + 𝐶2-------1 

𝑖𝑖) 𝑖𝑛 𝐴 

𝑇2 = 𝐶1𝑙𝑛𝑟2 + 𝐶2 ------------2 

Eqn 1- Eqn 2 

𝑇1 − 𝑇2 = 𝐶1𝑙𝑛𝑟1 − 𝐶1𝑙𝑛𝑟2 

𝑇1 − 𝑇2 = 𝐶1𝑙𝑛
𝑟1

𝑟2
 

𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

= 𝐶1 

𝑇1 =
𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

𝑙𝑛𝑟1 + 𝐶2 

𝑇1 −
𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

𝑙𝑛𝑟1 = 𝐶2 

𝑇 =
𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

𝑙𝑛𝑟 + 𝑇1 −
𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

𝑙𝑛𝑟1 

𝑇 − 𝑇1 = (𝑇1 − 𝑇2) (
𝑙𝑛𝑟 − 𝑙𝑛𝑟1

𝑙𝑛
𝑟1
𝑟2

) 

𝑇 − 𝑇1

𝑇1 − 𝑇2
=

𝑙𝑛
𝑟
𝑟1

𝑙𝑛
𝑟1
𝑟2

 

𝑇 − 𝑇1

𝑇1 − 𝑇2
= −

𝑙𝑛
𝑟
𝑟1

𝑙𝑛
𝑟2
𝑟1

 

𝑇1 − 𝑇

𝑇1 − 𝑇2
=

𝑙𝑛
𝑟
𝑟1

𝑙𝑛
𝑟2
𝑟1

 

Above is the temperature distribution 
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Rate of Heat transfer  

𝑄 = −𝐾𝐴
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝐾2𝜋𝑟𝐿
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝐾2𝜋𝑟𝐿
𝐶1

𝑟
 

𝑄 = −2𝜋𝐿𝐾𝐶1 

𝑄 = −2𝜋𝐿𝐾
𝑇1 − 𝑇2

𝑙𝑛
𝑟1
𝑟2

 

𝑄 = 2𝜋𝐿𝐾
𝑇1 − 𝑇2

𝑙𝑛
𝑟2
𝑟1

 

Temperature Distribution in ID heat flow for sphere  with constant thermal conductivity 

𝑑

𝑑𝑥
(𝑘𝑟2 𝑑𝑇

𝑑𝑟
) = 0 

𝑘
𝑑

𝑑𝑥
(𝑟2 𝑑𝑇

𝑑𝑟
) = 0                                                                                        

𝑑

𝑑𝑥
(𝑟2 𝑑𝑇

𝑑𝑟
) = 0 

Integrating above equation 

𝑟2 𝑑𝑇

𝑑𝑟
= 𝐶1 

𝑑𝑇

𝑑𝑟
=

𝐶1

𝑟2
 

𝑑𝑇 =
𝐶1

𝑟2
 𝑑𝑟 

Integrating above equation 

𝑇 = 𝐶1

𝑟−2+1

−2 + 1
+ 𝐶2 

𝑇 = −𝐶1𝑟−1 + 𝐶2 

𝑇 =
−𝐶1

𝑟
+ 𝐶2--------A 

Boundary conditions are 𝑖) 𝑎𝑡 𝑟 = 𝑟1, 𝑇 = 𝑇1 𝑖𝑖) 𝑎𝑡 𝑟 = 𝑟2, 𝑇 = 𝑇2 

R1 

R2 

T1 

T2 
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𝑖) 𝑖𝑛 𝐴 

𝑇1 =
−𝐶1

𝑟1
+ 𝐶2-----1 

𝑖𝑖) 𝑖𝑛 𝐴 

𝑇2 =
−𝐶1

𝑟2
+ 𝐶2--------------2 

Eqn 1− Eqn 2 

𝑇1 − 𝑇2 =
−𝐶1

𝑟1
−

−𝐶1

𝑟2
 

𝑇1 − 𝑇2 =
−𝐶1

𝑟1
+

𝐶1

𝑟2
 

𝑇1 − 𝑇2 = −𝐶1 (
1

𝑟1
−

1

𝑟2
) 

−
𝑇1 − 𝑇2

(
1
𝑟1

−
1
𝑟2

)
= 𝐶1 

Substituting 𝐶1𝑖𝑛 1 

𝑇1 =
𝑇1 − 𝑇2

𝑟1 (
1
𝑟1

−
1
𝑟2

)
+ 𝐶2 

𝐶2 = 𝑇1 −
𝑇1 − 𝑇2

𝑟1 (
1
𝑟1

−
1
𝑟2

)
 

Substituting 𝐶1 𝑎𝑛𝑑 𝐶2inA 

𝑇 =
𝑇1 − 𝑇2

𝑟 (
1
𝑟1

−
1
𝑟2

)
+ 𝑇1 −

𝑇1 − 𝑇2

𝑟1 (
1
𝑟1

−
1
𝑟2

)
 

𝑇 − 𝑇1 =
𝑇1 − 𝑇2

(
1
𝑟1

−
1
𝑟2

)
(

1

𝑟
−

1

𝑟1
) 

𝑇 − 𝑇1

𝑇1 − 𝑇2
=

(
1
𝑟 −

1
𝑟1

)

(
1
𝑟1

−
1
𝑟2

)
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𝑇 − 𝑇1

𝑇1 − 𝑇2
= −

(
1
𝑟1

−
1
𝑟

)

(
1
𝑟1

−
1
𝑟2

)
 

𝑇1 − 𝑇

𝑇1 − 𝑇2
=

(
1
𝑟1

−
1
𝑟

)

(
1
𝑟1

−
1
𝑟2

)
 

Above is the temperature distribution equation 

Rate of Heat transfer  

𝑄 = −𝐾𝐴
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝐾4𝜋𝑟2
𝑑𝑇

𝑑𝑟
 

𝑄 = −𝐾4𝜋𝑟2
𝐶1

𝑟2
 

𝑄 = −𝐾4𝜋𝐶1 

𝑄 = −4𝜋𝐾 (−
𝑇1 − 𝑇2

(
1
𝑟1

−
1
𝑟2

)
) 

𝑄 = 4𝜋𝐾 
𝑇1 − 𝑇2

(
1
𝑟1

−
1
𝑟2

)
 

Composite Slab 

           T1                 T2                 T3                T4 

 

hi ho 

Ti T∞ 

                

 

 

Convective Thermal resistance from fluid at 𝑇𝑖 to Inner surface =
1

ℎ1𝐴
  

 

  L1 

 

K1 

L2 

L3 

K2 
K3 
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Conductive Thermal resistance in inner first  layer =
𝐿1

𝑘1𝐴
 

Conductive Thermal resistance in second  layer =
𝐿2

𝑘2𝐴
 

Conductive Thermal resistance in third layer =
𝐿3

𝑘3𝐴
 

Convective Thermal resistance from outer surface to Surrundings at 𝑇∞ =
1

ℎ0𝐴
 

Total resistance from 𝑇𝑖 𝑡𝑜  𝑇∞ =
1

ℎ1𝐴
+

𝐿1

𝑘1𝐴
+

𝐿2

𝑘2𝐴
+

𝐿3

𝑘3𝐴
+

1

ℎ0𝐴
 

Hence Heat transfer rate 𝑄 =
𝑇𝑖−𝑇∞

1

ℎ1𝐴
+

𝐿1
𝑘1𝐴

+
𝐿2

𝑘2𝐴
+

𝐿3
𝑘3𝐴

+
1

ℎ0𝐴

 

𝑄 =
𝑇𝑖 − 𝑇∞

1
𝐴

(
1
ℎ1

+
𝐿1
𝑘1

+
𝐿2
𝑘2

+
𝐿3
𝑘3

+
1

ℎ0
)

 

𝑄 =
𝑇𝑖−𝑇1

1

ℎ1𝐴

 ; 𝑄 =
𝑇1−𝑇2

𝐿1
𝑘1𝐴

 ; 𝑄 =
𝑇2−𝑇3

𝐿2

𝑘2𝐴

 ; 𝑄 =
𝑇3−𝑇4

𝐿3

𝑘3𝐴

 𝑄 =
𝑇4−𝑇∞

1

ℎ0𝐴

 

 

Composite cylinder 
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r1

r2

r3

r4

T1

T2

T3

T4

Ti

hi
T¥

K1

K2

K3

ho

 

Convective Thermal resistance from fluid at 𝑇𝑖 to Inner surface =
1

ℎ12𝜋𝑟1𝐿
  

Conductive Thermal resistance in inner first  layer =
𝑙𝑛

𝑟2
𝑟1

2𝜋𝐿𝑘1
 

Conductive Thermal resistance in second  layer =
𝑙𝑛

𝑟3
𝑟2

2𝜋𝐿𝑘2
 

Conductive Thermal resistance in third layer =
𝑙𝑛

𝑟4
𝑟3

2𝜋𝐿𝑘3
 

Convective Thermal resistance from outer surface to Surrundings at 𝑇∞ =
1

ℎ02𝜋𝑟4𝐿
 

Total resistance from 𝑇𝑖 𝑡𝑜  𝑇∞ =
1

ℎ12𝜋𝑟1𝐿
+

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝑘1
+

𝑙𝑛
𝑟3
𝑟2

2𝜋𝐿𝑘2
+

𝑙𝑛
𝑟4
𝑟3

2𝜋𝐿𝑘3
+

1

ℎ02𝜋𝑟4𝐿
 

Hence Heat transfer rate 𝑄 =
𝑇𝑖−𝑇∞

1

ℎ12𝜋𝑟1𝐿
+

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝑘1
+

𝑙𝑛
𝑟3
𝑟2

2𝜋𝐿𝑘2
+

𝑙𝑛
𝑟4
𝑟3

2𝜋𝐿𝑘3
+

1

ℎ02𝜋𝑟4𝐿

 

𝑄 =
𝑇𝑖 − 𝑇∞

1
2𝜋𝐿 (

1
ℎ1𝑟1

+
𝑙𝑛

𝑟2
𝑟1

𝑘1
+

𝑙𝑛
𝑟3
𝑟2

𝑘2
+

𝑙𝑛
𝑟4
𝑟3

𝑘3
+

1
ℎ0𝑟4

)

 

𝑄 =
𝑇𝑖−𝑇1

1

ℎ12𝜋𝑟1𝐿

 ; 𝑄 =
𝑇1−𝑇2

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝑘1

 ; 𝑄 =
𝑇2−𝑇3

𝑙𝑛
𝑟3
𝑟2

2𝜋𝐿𝑘2

 ; 𝑄 =
𝑇3−𝑇4

𝑙𝑛
𝑟4
𝑟3

2𝜋𝐿𝑘3

 𝑄 =
𝑇4−𝑇∞

1

ℎ02𝜋𝑟4𝐿
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Composite sphere 

r1

r2

r3

r4

T1

T2

T3

T4

Ti

hi
T¥

K1

K2

K3

ho

 

Convective Thermal resistance from fluid at 𝑇𝑖 to Inner surface =
1

ℎ𝑖4𝜋𝑟1
2  

Conductive Thermal resistance in inner first  layer =
(

1

𝑟1
−

1

𝑟2
)

4𝜋𝑘1
 

Conductive Thermal resistance in second  layer =
(

1

𝑟2
−

1

𝑟3
)

4𝜋𝑘2
 

Conductive Thermal resistance in third layer =
(

1

𝑟3
−

1

𝑟2
)

4𝜋𝑘3
 

Convective Thermal resistance from outer surface to Surrundings at 𝑇∞ =
1

ℎ𝑜4𝜋𝑟4
2  

Total resistance from 𝑇𝑖 𝑡𝑜  𝑇∞ =
1

ℎ𝑖4𝜋𝑟1
2  +

(
1

𝑟1
−

1

𝑟2
)

4𝜋𝑘1
+

(
1

𝑟2
−

1

𝑟3
)

4𝜋𝑘2
+

(
1

𝑟3
−

1

𝑟2
)

4𝜋𝑘3
+

1

ℎ𝑜4𝜋𝑟4
2 

Hence Heat transfer rate 𝑄 =
𝑇𝑖−𝑇∞

1

ℎ𝑖4𝜋𝑟1
2 +

(
1

𝑟1
−

1
𝑟2

)

4𝜋𝑘1
+

(
1

𝑟2
−

1
𝑟3

)

4𝜋𝑘2
+

(
1

𝑟3
−

1
𝑟2

)

4𝜋𝑘3
+

1

ℎ04𝜋𝑟4
2
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𝑄 =
𝑇𝑖 − 𝑇∞

1
4𝜋 (

1
ℎ1𝑟1

2 +
(

1
𝑟1

−
1
𝑟2

)

𝑘1
+

(
1
𝑟2

−
1
𝑟3

)

𝑘2
+

(
1
𝑟3

−
1
𝑟2

)

𝑘3
+

1
ℎ0𝑟4

2)

 

𝑄 =
𝑇𝑖−𝑇1

1

ℎ𝑖4𝜋𝑟1
2

 ; 𝑄 =
𝑇1−𝑇2

(
1

𝑟1
−

1

𝑟2
)

4𝜋𝑘1

 ; 𝑄 =
𝑇2−𝑇3

(
1

𝑟2
−

1

𝑟3
)

4𝜋𝑘2

 ; 𝑄 =
𝑇3−𝑇4

(
1

𝑟3
−

1

𝑟2
)

4𝜋𝑘3

 𝑄 =
𝑇4−𝑇∞

1

ℎ𝑜4𝜋𝑟4
2
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Module 2 

Critical Thickness of Insulation for Sphere and Cylinder 

VTU Questions ( Theory) 

1. Define critical thickness of insulation and explain its significance (2a, June/July 17, 04 Marks) 

2. What is physical significance of critical thickness of insulation? Derive an expression for critical 

thickness of insulation for a cylinder  

3. What is critical thickness of insulation on small diameter wire or pipe? Explain its physical 

significance and derive an expression for the same 

4. Derive an expression for critical thickness of insulation for a cylinder. Discuss the design aspects for 

providing insulation scheme for cable wires and steam pipes  06 June/July 13, Dec14/Jan15, small 

diameter wire or pipe  

5 Derive an expression for critical thickness of insulation for a sphere  

Critical radius of Insulation 

It is radius of insulation in cylinder or sphere is the radius at which heat transfer maximum of insulation 

for which heat transfer is maximum.  

Critical thickness  of Insulation 

It is thickness of insulation in cylinder or sphere is the thickness at which heat transfer maximum of 

insulation for which heat transfer is maximum 

Cylinder 

𝑄 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾 +
1

ℎ2𝜋𝑟1𝐿

 

maximum Heat Transfer is constant . Hence differentiation of Q at maximum value with respect to 𝑟2 =

0 

𝑑𝑄

𝑑𝑟2
= 0;   

𝑑

𝑑𝑟2

(

 
 𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾 +
1

ℎ2𝜋𝑟2𝐿)

 
 
= 0 
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𝑑

𝑑𝑟2
(
𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾
+

1

2𝜋𝑟2𝐿
) = 0 

𝑑

𝑑𝑟2
(
𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾
)+

𝑑

𝑑𝑟2
(

1

ℎ2𝜋𝑟2𝐿
) = 0 

1

2𝜋𝐿𝐾

𝑑

𝑑𝑟2
(𝑙𝑛

𝑟2
𝑟1
) +

1

ℎ2𝜋𝐿

𝑑

𝑑𝑟2
(
1

𝑟2
) = 0 

1

2𝜋𝐿𝐾

𝑑

𝑑𝑟2
(𝑙𝑛

𝑟2
𝑟1
) +

1

ℎ2𝜋𝐿

𝑑

𝑑𝑟2
(
1

𝑟2
) = 0 

1

2𝜋𝐿𝐾

𝑑

𝑑𝑟2
(𝑙𝑛𝑟2 − 𝑙𝑛𝑟1) +

1

ℎ2𝜋𝐿

𝑑

𝑑𝑟2
(𝑟2
−1) = 0 

1

2𝜋𝐿𝐾
(
1

𝑟2
− 0) +

1

ℎ2𝜋𝐿
(−1𝑟2

−2) = 0 

1

2𝜋𝐿𝐾𝑟2
−

1

ℎ2𝜋𝐿
𝑟2
−2 = 0 

1

2𝜋𝐿𝐾𝑟2
−

1

ℎ2𝜋𝐿𝑟2
2 = 0 

1

2𝜋𝐿𝐾𝑟2
=

1

ℎ2𝜋𝐿𝑟2
2 

1

𝐾𝑟2
=

1

ℎ𝑟2
2 

𝑟2 =
𝐾

ℎ
 

Ie for maximum heat transfer value 0f radius of insulation is equal to  
𝐾

ℎ
 

Hence critical radius of insulation for cylinder is 𝑟𝑐 =
𝐾

ℎ
 

Critical thickness of Insulation for cylinder is  
𝐾

ℎ
− 𝑟1 

Sphere  

𝑄 =
𝑇𝑠 − 𝑇∞

1
𝑟1
−
1
𝑟2

4𝜋𝐾 +
1

ℎ4𝜋𝑟2
2
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maximum Heat Transfer is constant . Hence differentiation of Q at maximum value with respect to 𝑟2 =

0 

𝑑𝑄

𝑑𝑟2
= 0;   

𝑑

𝑑𝑟2

(

 
 
 𝑇𝑠 − 𝑇∞
1
𝑟1
−
1
𝑟2

4𝜋𝐾
+

1
ℎ4𝜋𝑟2

2)

 
 
 
= 0 

𝑑

𝑑𝑟2
(

1
𝑟1
−
1
𝑟2

4𝜋𝐾
+

1

ℎ4𝜋𝑟2
2) = 0 

𝑑

𝑑𝑟2
(

1
𝑟1
−
1
𝑟2

4𝜋𝐾
)+

𝑑

𝑑𝑟2
(

1

ℎ4𝜋𝑟2
2) = 0 

1

4𝜋𝐾

𝑑

𝑑𝑟2
(
1

𝑟1
−
1

𝑟2
) +

1

ℎ4𝜋

𝑑

𝑑𝑟2
(
1

𝑟2
2) = 0 

1

4𝜋𝐾

𝑑

𝑑𝑟2
(𝑟1
−1 − 𝑟2

−1) +
1

ℎ4𝜋

𝑑

𝑑𝑟2
(𝑟2
−2) = 0 

1

4𝜋𝐾
(0 − (−1𝑟2

−2)) +
1

ℎ4𝜋𝐾
(−2𝑟2

−3) = 0 

1

4𝜋𝐾
(0 +

1

𝑟2
2) +

1

ℎ4𝜋𝐾
(−2

1

𝑟2
3) = 0 

1

4𝜋𝐾

1

𝑟2
2 =

2

ℎ4𝜋𝐾

1

𝑟2
3 

1

𝐾𝑟2
2 =

2

ℎ

1

𝑟2
3 

𝑟2 =
2𝐾

ℎ
 

Ie for maximum heat transfer value 0f radius of insulation is equal to  
2𝐾

ℎ
 

Hence critical radius of insulation for cylinder is 𝑟𝑐 =
2𝐾

ℎ
 

Critical thickness of Insulation for cylinder is  
2𝐾

ℎ
− 𝑟1 
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6.  A wire of 8 mm diameter at a temperature of  60oC is to be insulated by a material having 

K=0.174 W/mo C. Heat transfer Coefficient ha= 8 W/m2K and ambient temperature Ta= 25oC.For 

maximum heat loss , find the minimum thickness of insulation. Find increase in heat dissipation 

due to insulation  

Solution 

Take length of wire is 1m  

𝑑1 = 8𝑚𝑚 = 0.008𝑚; 𝑟1 = 0.004; 𝑇𝑠 = 60
𝑜𝐶;   𝑘 = 0.174𝑊/𝑚𝐾; ℎ = 8𝑊/𝑚2𝐾; 𝑇∞ = 25

0𝐶; 

With bare wire  

𝑄 = ℎ𝐴(𝑇𝑠 − 𝑇∞);     𝑄 = ℎ2𝜋𝑟1𝐿(𝑇𝑠 − 𝑇∞) ; 

𝑄 = 8 ∗ 2 ∗ 𝜋 ∗ 0.004 ∗ 1 ∗ (60 − 25);  𝑄 = 0.8796 𝑤𝑎𝑡𝑡𝑠 

For critical radius =
𝐾

ℎ
 

𝑟𝑐 =
0.174

8
= 0.02175𝑚 

Heat Transfer in  wire with insulation with  critical radius 

𝑄𝑚𝑎𝑥 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟𝑐
𝑟1

2𝜋𝐿𝐾
+

1
ℎ2𝜋𝑟1𝐿

 

𝑄𝑚𝑎𝑥 =
60 − 25

𝑙𝑛
0.02175
0.004

2𝜋 ∗ 1 ∗ 0.174 +
1

8 ∗ 2𝜋 ∗ 0.004 ∗ 1

 

𝑄𝑚𝑎𝑥 =
60 − 25

𝑙𝑛
0.02175
0.004

2𝜋 ∗ 1 ∗ 0.174 +
1

8 ∗ 2𝜋 ∗ 0.004 ∗ 1

 

𝑄𝑚𝑎𝑥 = 5.366Watts 

Increase in Heat transfer due to insulation of critical radius = 5.366 − 0.8976 = 4.468 𝑊𝑎𝑡𝑡𝑠 

Percentage in increase in Heat Transfer =
𝑄𝑚𝑎𝑥−𝑄

𝑄
x100 

5.366 − 0.8976

0.8976
𝑥100 = 497.81% 
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7. An electric cable of 10 mm diameter is to be laid in atmosphere at 20 o C .The estimated surface 

temperature of the cable due to heat generation is 65 oC. Find the maximum percentage 

increase in heat dissipation when the wire is insulated with rubber having a 0.155 W/mo C and 

h= 88.5 W/m2 o C 

𝑑1 = 0.01𝑚; 𝑟1 = 0.005𝑚;  𝑇𝑠 = 65
𝑜𝐶;   𝑘 = 0.155𝑊/𝑚𝐾; ℎ = 88.5𝑊/𝑚2𝐾; 𝑇∞ = 20

0𝐶 

With bare wire  

𝑄 = ℎ𝐴(𝑇𝑠 − 𝑇∞);     𝑄 = ℎ2𝜋𝑟1𝐿(𝑇𝑠 − 𝑇∞) 

For critical radius =
𝐾

ℎ
 

𝑄𝑚𝑎𝑥 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟𝑐
𝑟1

2𝜋𝐿𝐾
+

1
ℎ2𝜋𝑟1𝐿

 

Percentage increase in Heat Transfer =
𝑄𝑚𝑎𝑥−𝑄

𝑄
x100 

 

8. A Copper pipe carrying refrigerant -20oC is 10mm in outer diameter and is exposed to ambient 

25oC with convective heat transfer coefficient of 50W/m2K. It is proposed to apply the insulation 

material having thermal conductivity of 0.5W/mK. Determine the thickness beyond which the 

heat gain will be reduced. Calculate the heat loss for 2.5mm and 7.5mm thick layer of insulation 

over 1m length.  

𝑑1 = 10𝑚𝑚 = 0.01𝑚; 𝑟1 = 5𝑚𝑚 = 0.005𝑚;  𝑇𝑠 = −20
𝑜𝐶;   𝑘 = 0.5𝑊/𝑚𝐾;  ℎ = 50𝑊/𝑚2𝐾 ; 𝑇∞ =

250𝐶 

For critical radius =
𝐾

ℎ
 

𝑟𝑐 =
0.5

50
= 0.01𝑚  

Critical thickness of insulation is 𝑟𝑐 − 𝑟1 = 0.01 − 0.005 = 0.005𝑚 = 5𝑚𝑚 

Heat gain will be reduce beyond 5 mm thickness of insulation 

Heat Transfer with critical thickness of Insulation 

𝑟𝑐 = 0.01𝑚 
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𝑄 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟𝑐
𝑟1

2𝜋𝐿𝐾
+

1
ℎ2𝜋𝑟1𝐿

 

𝑄 =
−20 − 25

𝑙𝑛
0.01
0.005

2𝜋 ∗ 1 ∗ 0.5
+

1
50 ∗ 2 ∗ 𝜋 ∗ 0.005 ∗ 1

 

𝑄 = −30.12𝑊𝑎𝑡𝑡𝑠 

 

Heat Transfer with 2.5mm thickness of Insulation 

𝑟2 = 𝑟1 + 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠;  𝑟2 = 5 + 2.5 = 7.5𝑚𝑚; 𝑟2 = 0.0075 

𝑄 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟𝑐
𝑟1

2𝜋𝐿𝐾
+

1
ℎ2𝜋𝑟1𝐿

 

𝑄 =
−20 − 25

𝑙𝑛
0.0075
0.005

2𝜋 ∗ 1 ∗ 0.5
+

1
50 ∗ 2 ∗ 𝜋 ∗ 0.005 ∗ 1

 

𝑄 = −58.77𝑊𝑎𝑡𝑡𝑠 

Heat Transfer with 7.5mm  thickness of Insulation 

𝑟2 = 𝑟1 + 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠;  𝑟2 = 5 + 7.5 = 12.5𝑚𝑚; 𝑟2 = 0.0125𝑚 

𝑄 =
𝑇𝑠 − 𝑇∞

𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝐾 +
1

ℎ2𝜋𝑟1𝐿

 

𝑄 =
−20 − 25

𝑙𝑛
0.0125
0.005

2𝜋 ∗ 1 ∗ 0.5
+

1
50 ∗ 2 ∗ 𝜋 ∗ 0. .005 ∗ 1

 

𝑄 = −48.47𝑊𝑎𝑡𝑡𝑠 

Negative sign indicates heat is gained to the refrigerant ie from atmosphere to refrigerant 

 

9.  A small electric heating application uses 1.82mm diameter wire with 0.71mm thickness K 

(insulation) =0.118W/mK and ho=34.1W/m2K. Determine the critical thickness of insulation for 
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this case and change in heat transfer rate if critical thickness was used. Assume the temperature 

difference between surface of wire and surrounding air remain unchanged     

10. A sphere of 8 mm diameter at a temperature of  60oC is to be insulated by a material having 

K=0.174 W/mo C. Heat transfer Coefficient ha= 8 W/m2K and ambient temperature Ta= 25oC.For 

maximum heat loss , find the minimum thickness of insulation. Find increase in heat dissipation 

due to insulation  

𝑑1 = 10𝑚𝑚 = 0.01𝑚; 𝑟1 = 5𝑚𝑚 = 0.005𝑚;  𝑇𝑠 = −20
𝑜𝐶;   𝑘 = 0.5𝑊/𝑚𝐾;  ℎ = 50𝑊/𝑚2𝐾 ; 𝑇∞ =

250𝐶 

For critical radius =
2𝐾

ℎ
 

𝑟𝑐 =
2∗0.5

50
= 0.02𝑚  

Critical thickness of insulation is 𝑟𝑐 − 𝑟1 = 0.02 − 0.005 = 0.015𝑚 = 15𝑚𝑚 

Heat gain will be reduce beyond 5 mm thickness of insulation 

With bare wire  

𝑄 = ℎ𝐴(𝑇𝑠 − 𝑇∞);     𝑄 = ℎ ∗ 4 ∗ 𝜋 ∗ 𝑟1
2 ∗ (𝑇𝑠 − 𝑇∞) ; 

𝑄 = 8 ∗ 4 ∗ 𝜋 ∗ 0.0052 ∗ (60 − 25);  𝑄 =  0.08796 𝑤𝑎𝑡𝑡𝑠 

For critical radius =
𝐾

ℎ
 

𝑟𝑐 =
0.174

8
= 0.02175𝑚 

Heat Transfer in  wire with insulation with  critical radius 

𝑄 =
𝑇𝑠 − 𝑇∞

1
𝑟1
−
1
𝑟2

4𝜋𝐾 +
1

ℎ4𝜋𝑟2
2

 

𝑄 =
60 − 25

1
0.005

−
1
0.02

4𝜋 ∗ 0.174 +
1

8 ∗ 4𝜋 ∗ 0.022

 

𝑄𝑚𝑎𝑥 = 

Increase in Heat transfer due to insulation of critical radius = 5.366 − 0.8976 = 4.468 𝑊𝑎𝑡𝑡𝑠 

Percentage in increase in Heat Transfer =
𝑄𝑚𝑎𝑥−𝑄

𝑄
x100 
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Extended Surfaces 

 

11. Obtain an expression for temperature distribution and heat flow through a fin of uniform cross 

section with the end is insulated 

11. Obtain an expression for temperature distribution and heat flows through a rectangular fin 

when the end of the fin is insulated  

12. Derive an expression for temperature distribution for a pinfin when the tip of the film is 

insulated  

13.  Derive an expression for temperature distribution for a short fin of uniform cross section 

without insulated tips starting from fundamental energy balance equation  

14. Differentiate between effectiveness and efficiency of fins  

15. Define fin effectiveness. When the use of fin is not justified 

 

 

 

Extended Surfaces (Fins) 

Uses of fin 

Fins are used to increase the heat transfer from the surface so that the surface temperature of fin can 

be maintained at designed value 

Applications 

1. Automobile radiators ,  

2. Compressors and IC engines 

3. CPU of computers to dissipate the heat 

4. Hydrogen fuel cells  

Rectangular fin: 

Assumption in Heat transfer of Fin  

1. Steady state heat transfer in fins 

2. Properties of material of fins is constant 

3. No internal Heat generation 
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4. One dimensional conduction 

5. Uniform convection across the surface are h=constant  

Consider a rectangular protruding from the surface. 

Consider a small element in a rectangular fin of elemental length dx at a distance x from the base of fin. 

Let 𝑇𝑜be the temperature of the base of the fin , ‘T’ be the temperature of fin at x , h is the surface heat 

transfer coefficient , P is the perimeter of fin and 𝐴𝑐 cross sectional area of element 

Heat balance applied to the element  

Heat inflow to the element by conduction at X =Amount of leaving the element at X+dx +Amount of 

heat convected from the surface to surroundings 

𝑄𝑥 = 𝑄𝑥+𝑑𝑥 + 𝑄𝑐𝑜𝑛 -------------1 

𝑄𝑥 − 𝑄𝑥+𝑑𝑥 − 𝑄𝑐𝑜𝑛 = 0 

𝑄𝑥 = −𝐾𝐴𝑐
𝑑𝑇

𝑑𝑥
 

𝑄𝑥+𝑑𝑥 = 𝑄𝑥 +
𝑑𝑄𝑥
𝑑𝑥

𝑑𝑥 

𝑄𝑥 − 𝑄𝑥+𝑑𝑥 = −
𝑑𝑄𝑥

𝑑𝑥
𝑑𝑥 -------------2 

Substituting  2 in 1 

−
𝑑𝑄𝑥

𝑑𝑥
𝑑𝑥 − 𝑄𝑐𝑜𝑛 = 0-------3 

𝑄𝑥 = −𝐾𝐴𝑐
𝑑𝑇

𝑑𝑥
 

𝑑𝑄𝑥
𝑑𝑥

𝑑𝑥 =
𝑑 (−𝐾𝐴𝑐

𝑑𝑇
𝑑𝑥
)

𝑑𝑥
𝑑𝑥 

𝑑𝑄𝑥
𝑑𝑥

𝑑𝑥 = −𝐾𝐴𝑐
𝑑2𝑇

𝑑𝑥2
𝑑𝑥      

−
𝑑𝑄𝑥
𝑑𝑥

𝑑𝑥 = 𝐾𝐴𝑐
𝑑2𝑇

𝑑𝑥2
𝑑𝑥      

Heat from fin to surroundings by Convection 𝑄𝑐𝑜𝑛 = ℎ𝐴𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛(𝑇 − 𝑇∞) 

𝐴𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑑𝑥 where P is the perimeter of element and dx is the length of element 

𝑄𝑐𝑜𝑛 = ℎ𝑃𝑑𝑥(𝑇 − 𝑇∞)-------------5 
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Substituting 4 and 5 in3 

𝐾𝐴𝑐
𝑑2𝑇

𝑑𝑥2
𝑑𝑥 −  ℎ𝑃𝑑𝑥(𝑇 − 𝑇∞) = 0 

𝐾𝐴𝑐
𝑑2𝑇

𝑑𝑥2
−  ℎ𝑃(𝑇 − 𝑇∞) = 0 

𝑑2𝑇

𝑑𝑥2
− 

ℎ𝑃

𝐾𝐴𝑐
(𝑇 − 𝑇∞) = 0 -------------6 

Let 𝜃 = (𝑇 − 𝑇∞)   ;  differentiating equation   
𝑑𝑇

𝑑𝑥
=
𝑑𝜃

𝑑𝑥
− 0 hence, 

𝑑𝑇

𝑑𝑥
=
𝑑𝜃

𝑑𝑥
 

ℎ𝑃

𝐾𝐴𝑐
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑚2 

Substituting above values in equation 6 

𝑑2𝜃

𝑑𝑥2
− 𝑚2𝜃 = 0   

Above equation is second order homogeneous differential equation and solution for above equation is 

𝜃 = 𝐴𝑒−𝑚𝑥 + 𝐵𝑒𝑚𝑥  ---------------A 

𝑒−𝑚𝑥 = 𝐶𝑜𝑠ℎ𝑚𝑥 + 𝑆𝑖𝑛ℎ𝑚𝑥; 𝑒𝑚𝑥 =  𝐶𝑜𝑠ℎ𝑚𝑥 − 𝑆𝑖𝑛ℎ𝑚𝑥 

Substituting above values in equation A  

𝜃 = (𝐴 + 𝐵)𝐶𝑜𝑠ℎ𝑚𝑥 + (𝐴 − 𝐵)𝑆𝑖𝑛ℎ𝑚𝑥 

𝜃 = 𝐶𝐶𝑜𝑠ℎ𝑚𝑥 + 𝐷𝑆𝑖𝑛ℎ𝑚𝑥 -------------B                                                 where 𝐶 =  𝐴 + 𝐵 𝑎𝑛𝑑 𝐷 = 𝐴 − 𝐵 

Case 1 

End of the fin is insulated; 

𝜃 = 𝐶𝐶𝑜𝑠ℎ𝑚𝑥 + 𝐷𝑆𝑖𝑛ℎ𝑚𝑥 -------------B 

Boundary conditions are i) at = 0 , 𝜃 = 𝜃0 ii) at 𝑥 = 𝐿 ,
𝑑𝜃

𝑑𝑥
= 0  ( since end is insulated 𝜃 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) 

Boundary condition i)  in B 

𝜃0 = 𝐶𝐶𝑜𝑠ℎ(0) + 𝐷𝑆𝑖𝑛ℎ(0) 

𝜃0 = 𝐶-------1 

Differentiating equation B 



Dr Abdul Sharief PACE Page 11 
 

𝑑𝜃

𝑑𝑥
= 𝐶𝑚𝑠𝑖𝑛ℎ𝑚𝑥 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝑥 

(
𝑑𝜃

𝑑𝑥
)
𝑥=𝐿

=  𝐶𝑚𝑠𝑖𝑛ℎ𝑚𝐿 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿 

0 =  𝜃0𝑚𝑠𝑖𝑛ℎ𝑚𝐿 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿 

𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿 = −𝜃0𝑚𝑠𝑖𝑛ℎ𝑚𝐿 

𝐷 = −𝜃0𝑡𝑎𝑛ℎ𝑚𝐿-----2 

Substituting C and D in equation B 

𝜃 = 𝜃0𝐶𝑜𝑠ℎ𝑚𝑥 − 𝜃0𝑡𝑎𝑛ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥 

𝜃 = 𝜃0𝐶𝑜𝑠ℎ𝑚𝑥 − 𝜃0
𝑆𝑖𝑛ℎ𝑚𝐿

𝐶𝑜𝑠ℎ𝑚𝐿
𝑆𝑖𝑛ℎ𝑚𝑥 

𝜃 = 𝜃0 (
𝐶𝑜𝑠ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥 − 𝑆𝑖𝑛ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥

𝐶𝑜𝑠ℎ𝑚𝐿
) 

𝜃 = 𝜃0 (
𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥)

𝐶𝑜𝑠ℎ𝑚𝐿
) 

𝑇 − 𝑇∞ = (𝑇𝑜 − 𝑇∞) (
𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥)

𝐶𝑜𝑠ℎ𝑚𝐿
) 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

=
𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥)

𝐶𝑜𝑠ℎ𝑚𝐿
 

Above is the Temperature equation for end of the fin is insulated  

Rate of Heat Transfer  

𝑄 = −𝐾𝐴𝑐 (
𝑑𝑇

𝑑𝑥
)
𝑥=0

 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=0

 

𝑑𝜃

𝑑𝑥
= 𝐶𝑚𝑠𝑖𝑛ℎ𝑚𝑥 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝑥 

(
𝑑𝜃

𝑑𝑥
)
𝑥=0

= 𝐷𝑚 

𝑄 = −𝐾𝐴𝑐𝐷𝑚 

𝑄 = −𝐾𝐴𝑐(−𝜃0𝑡𝑎𝑛ℎ𝑚𝐿)𝑚 
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𝑄 = 𝐾𝐴𝑐𝑚𝜃0𝑡𝑎𝑛ℎ𝑚𝐿 

Case 2 : very long fin L=∞ so that 𝑇𝐿 = 𝑇∞ at 𝑥 = 𝐿 𝜃 = 𝑇∞ − 𝑇∞ = 0 

𝜃 = 𝐴𝑒−𝑚𝑥 + 𝐵𝑒𝑚𝑥  ---------------A 

Boundary conditions are Boundary conditions are i) at = 0 , 𝜃 = 𝜃0 ii) at 𝑥 = 𝐿 , 𝜃 = 0   

Boundary Condition 1 in A 

𝜃0 =  𝐴𝑒
−0 + 𝐵𝑒0 

𝜃0 =  𝐴 + 𝐵  -----1 

Boundary Condition 2 in B 

0 = 𝐴𝑒−𝑚∞ + 𝐵𝑒𝑚∞ 

0 = 𝐴(0) + 𝐵(∞) 

0 = 0 + 𝐵(∞) 

Hence B must be 0 ie B=0 

Substituting B =0 in 1  

𝜃0 =  𝐴 + 0   hence 𝐴 = 𝜃0 and B= 0 

Hence Equation B becomes  

𝜃 = 𝜃0𝑒
−𝑚𝑥 

𝜃

𝜃0
= 𝑒−𝑚𝑥 

 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

= 𝑒−𝑚𝑥 

Above the temperature distribution equation for very long fin 

Rate of Heat Transfer 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝑇

𝑑𝑥
)
𝑥=0

 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=0
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𝜃 = 𝜃0𝑒
−𝑚𝑥 

𝑑𝜃

𝑑𝑥
= 𝜃0(−𝑚)𝑒

−𝑚𝑥 

𝑑𝜃

𝑑𝑥
= −𝑚𝜃0𝑒

−𝑚𝑥 

(
𝑑𝜃

𝑑𝑥
)
𝑥=0

= −𝑚𝜃0 

𝑄 = −𝐾𝐴𝑐(−𝑚𝜃0) 

𝑄 = 𝐾𝐴𝑐𝑚𝜃0 

Case 3 : Short fin with end is not insulated  

𝜃 = 𝐶𝐶𝑜𝑠ℎ𝑚𝑥 + 𝐷𝑆𝑖𝑛ℎ𝑚𝑥 -------------B 

Boundary conditions are i) at 𝑥 = 0 , 𝜃 = 𝜃0  

ii) at 𝑥 = 𝐿 , Heat transfer by conduction =Heat is transferred from the end surface by convection 

Boundary condition i)  in B 

𝜃0 = 𝐶𝐶𝑜𝑠ℎ(0) + 𝐷𝑆𝑖𝑛ℎ(0) 

𝜃0 = 𝐶-------1 

Boundary condition 2  

−𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=𝐿

= ℎ𝐴𝑐(𝜃)𝑥=𝐿 

−𝐾 (
𝑑𝜃

𝑑𝑥
)
𝑥=𝐿

= ℎ(𝜃)𝑥=𝐿 -------------------1 

𝜃 = 𝐶𝐶𝑜𝑠ℎ𝑚𝑥 + 𝐷𝑆𝑖𝑛ℎ𝑚𝑥 

𝑑𝜃

𝑑𝑥
=  𝐶𝑚𝑆𝑖𝑛ℎ𝑚𝑥 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝑥 

(𝜃)𝑥=𝐿 = 𝜃0 𝐶𝑜𝑠ℎ𝑚𝐿 + 𝐷𝑆𝑖𝑛ℎ𝑚𝐿 ------------------------2 

(
𝑑𝜃

𝑑𝑥
)
𝑥=𝐿

= 𝜃0𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿 ------------------3 

−𝐾(𝜃0𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿) = ℎ(𝜃0 𝐶𝑜𝑠ℎ𝑚𝐿 + 𝐷𝑆𝑖𝑛ℎ𝑚𝐿) 

−𝐾𝜃0𝑚𝑆𝑖𝑛ℎ𝑚𝐿 −  ℎ𝜃0 𝐶𝑜𝑠ℎ𝑚𝐿 = 𝐾 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝐿 +  ℎ 𝐷𝑆𝑖𝑛ℎ𝑚𝐿 

−𝜃0(𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ 𝐶𝑜𝑠ℎ𝑚𝐿) = 𝐷(𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿) 
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−𝜃0
𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ 𝐶𝑜𝑠ℎ𝑚𝐿

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
= 𝐷 

Substituting C and D in equation B 

𝜃 = 𝜃0𝐶𝑜𝑠ℎ𝑚𝑥−𝜃0
𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ𝜃0 𝐶𝑜𝑠ℎ𝑚𝐿

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
𝑆𝑖𝑛ℎ𝑚𝑥 

𝜃 = 𝜃0
𝐶𝑜𝑠ℎ𝑚𝑥(𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿) − 𝑆𝑖𝑛ℎ𝑚𝑥(𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ𝜃0 𝐶𝑜𝑠ℎ𝑚𝐿)

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 = 𝜃0
(𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥) − (𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥 + ℎ 𝐶𝑜𝑠ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥)

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 = 𝜃0
ℎ( 𝑆𝑖𝑛ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥 − 𝐶𝑜𝑠ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥) − 𝐾𝑚(𝑆𝑖𝑛ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥 − 𝐶𝑜𝑠ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥)

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 = 𝜃0
ℎ( 𝑆𝑖𝑛ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥 − 𝐶𝑜𝑠ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥) + 𝐾𝑚(𝐶𝑜𝑠ℎ𝑚𝐿𝐶𝑜𝑠ℎ𝑚𝑥 − 𝑆𝑖𝑛ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥)

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 = 𝜃0
ℎ( 𝑆𝑖𝑛ℎ𝑚(𝐿 − 𝑥)) + 𝐾𝑚(𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥))

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 = 𝜃0

ℎ
𝑚𝑘 (

 𝑆𝑖𝑛ℎ𝑚(𝐿 − 𝑥)) + (𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥))

𝐶𝑜𝑠ℎ𝑚𝐿 +
ℎ
𝑚𝑘

 𝑆𝑖𝑛ℎ𝑚𝐿
 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

=

ℎ
𝑚𝑘 (

 𝑆𝑖𝑛ℎ𝑚(𝐿 − 𝑥)) + (𝐶𝑜𝑠ℎ𝑚(𝐿 − 𝑥))

𝐶𝑜𝑠ℎ𝑚𝐿 +
ℎ
𝑚𝑘

 𝑆𝑖𝑛ℎ𝑚𝐿
 

 

Above is the temperature distribution equation for short fin with no insulation at the end surface  

Rate of Heat Transfer  

𝑄 = −𝐾𝐴𝑐 (
𝑑𝑇

𝑑𝑥
)
𝑥=0

 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=0

 

𝑑𝜃

𝑑𝑥
=  𝐶𝑚𝑆𝑖𝑛ℎ𝑚𝑥 + 𝐷𝑚𝐶𝑜𝑠ℎ𝑚𝑥 

(
𝑑𝜃

𝑑𝑥
)
𝑥=0

= 𝐷𝑚 

𝑄 = −𝐾𝐴𝑐𝐷𝑚 
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𝑄 = −𝐾𝐴𝑐𝑚𝐷 

𝑄 = −𝐾𝐴𝑐𝑚(−𝜃0
𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ 𝐶𝑜𝑠ℎ𝑚𝐿

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
) 

𝑄 = 𝐾𝐴𝑐𝑚𝜃0 (
𝐾𝑚𝑆𝑖𝑛ℎ𝑚𝐿 + ℎ 𝐶𝑜𝑠ℎ𝑚𝐿

𝐾𝑚𝐶𝑜𝑠ℎ𝑚𝐿 + ℎ 𝑆𝑖𝑛ℎ𝑚𝐿
) 

𝑄 = 𝐾𝐴𝑐𝑚𝜃0(
𝑡𝑎𝑛ℎ𝑚𝐿 +

ℎ
𝑚𝑘

𝐶𝑜𝑠ℎ𝑚𝐿

1 +
ℎ
𝑚𝑘

 𝑆𝑖𝑛ℎ𝑚𝐿
) 

Case 4; Fin is connected to two surfaces maintained at two Different temperature  

𝜃 = 𝐶𝐶𝑜𝑠ℎ𝑚𝑥 + 𝐷𝑆𝑖𝑛ℎ𝑚𝑥 -------------B 

Boundary conditions are i) when 𝑥 = 0, 𝜃 = 𝜃1 ii) 𝑥 = 𝐿, 𝜃 = 𝜃2 

Boundary condition i)  in B 

𝜃1 = 𝐶𝐶𝑜𝑠ℎ(0) + 𝐷𝑆𝑖𝑛ℎ(0) 

𝜃1 = 𝐶-------1 

Boundary condition ii) in B ie ii) 𝑥 = 𝐿, 𝜃 = 𝜃2 in B 

𝜃2 = 𝐶𝐶𝑜𝑠ℎ𝑚𝐿 + 𝐷𝑆𝑖𝑛ℎ𝑚𝐿 

𝜃2 = 𝜃1𝐶𝑜𝑠ℎ𝑚𝐿 + 𝐷𝑆𝑖𝑛ℎ𝑚𝐿 

𝜃2 − 𝜃1𝐶𝑜𝑠ℎ𝑚𝐿

𝑆𝑖𝑛ℎ𝑚𝐿
= 𝐷 

Substituting c and D in equation B 

𝜃 = 𝜃1𝐶𝑜𝑠ℎ𝑚𝑥 +
𝜃2 − 𝜃1𝐶𝑜𝑠ℎ𝑚𝐿

𝑆𝑖𝑛ℎ𝑚𝐿
𝑆𝑖𝑛ℎ𝑚𝑥 

𝜃 =
𝜃1𝐶𝑜𝑠ℎ𝑚𝑥𝑆𝑖𝑛ℎ𝑚𝐿 + 𝜃2𝑆𝑖𝑛ℎ𝑚𝑥 − 𝜃1𝐶𝑜𝑠ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥 

𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 =
𝜃1(𝐶𝑜𝑠ℎ𝑚𝑥𝑆𝑖𝑛ℎ𝑚𝐿 − 𝐶𝑜𝑠ℎ𝑚𝐿𝑆𝑖𝑛ℎ𝑚𝑥)  + 𝜃2𝑆𝑖𝑛ℎ𝑚𝑥 

𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃 =
𝜃1𝑠𝑖𝑛ℎ𝑚(𝐿 − 𝑥)  + 𝜃2𝑆𝑖𝑛ℎ𝑚𝑥 

𝑆𝑖𝑛ℎ𝑚𝐿
 

𝜃

𝜃1
=
𝑠𝑖𝑛ℎ𝑚(𝐿 − 𝑥) +

𝜃2
𝜃1
𝑠𝑖𝑛ℎ𝑚𝑥

𝑆𝑖𝑛ℎ𝑚𝐿
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𝑇 − 𝑇∞
𝑇1 − 𝑇∞

=
𝑠𝑖𝑛ℎ𝑚(𝐿 − 𝑥) +

𝑇2 − 𝑇∞
𝑇1 − 𝑇∞

𝑠𝑖𝑛ℎ𝑚𝑥

𝑆𝑖𝑛ℎ𝑚𝐿
 

Above equation is temperature distribution equation 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝑇

𝑑𝑥
)
𝑥=0

 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=0

 

𝜃 =
𝜃1𝑠𝑖𝑛ℎ𝑚(𝐿 − 𝑥)  + 𝜃2𝑆𝑖𝑛ℎ𝑚𝑥 

𝑆𝑖𝑛ℎ𝑚𝐿
 

𝑑𝜃

𝑑𝑥
=
𝜃1(−𝑚)𝑐𝑜𝑠 ℎ𝑚(𝐿 − 𝑥)  + 𝜃2𝑚𝑐𝑜𝑠ℎ𝑚𝑥 

𝑆𝑖𝑛ℎ𝑚𝐿
 

(
𝑑𝜃

𝑑𝑥
)
𝑥=0

=
−𝑚𝜃1𝑐𝑜𝑠ℎ𝑚𝐿 +𝑚𝜃2

𝑆𝑖𝑛ℎ𝑚𝐿
 

𝑄 = −𝐾𝐴𝑐 (
𝑑𝜃

𝑑𝑥
)
𝑥=0

 

𝑄 = −𝐾𝐴𝑐 (
−𝑚𝜃1𝑐𝑜𝑠ℎ𝑚𝐿 +𝑚𝜃2

𝑆𝑖𝑛ℎ𝑚𝐿
) 

𝑄 = 𝐾𝐴𝑐 (
𝑚𝜃1𝑐𝑜𝑠ℎ𝑚𝐿 −𝑚𝜃2

𝑆𝑖𝑛ℎ𝑚𝐿
) 

 

 

Effectiveness of fin :  

It is the ratio of actual rate of  heat transfer from the  fin to the rate of heat transfer that would 

dissipated from the same surface area  without fin 

𝜀 =
𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑓𝑖𝑛

𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛
 

For fin with end of fin insulated  

𝜀 =
𝐾𝐴𝑐𝑚𝜃0𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝐴𝑐𝜃0
 

𝜀 =
𝐾𝑚𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝐴𝑐
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𝜀 =
𝐾√

ℎ𝑃
𝐾𝐴𝑐

𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝐴𝑐
 

If 𝜀 > 1 indicates fins are enhancing the heat transfer to maintain  the surface temperature to designed 

value. 

If 𝜀 < 1 indicates fins are acting as insulator and it reduces the dissipation of heat to environment  

If 𝜀 = 1 indicates addition of fins have no use ie it neither enhances or reduces the heat transfer from 

the surface 

Efficiency of fin:  

It is defined as the ratio of the actual heat transferred by fin to the maximum heat transfer from the fin 

if the whole surface of fin is maintained at base temperature  

𝜂 =
𝑄𝑓𝑖𝑛

𝑄𝑚𝑎𝑥
 

𝜂 =
𝑄𝑓𝑖𝑛

ℎ𝑃𝐿𝜃0
 

If end of the fin is insulated  

𝜂 =
𝐾𝐴𝑐𝑚𝜃0𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝑃𝐿𝜃0
 

𝜂 =
𝐾𝐴𝑐√

ℎ𝑃
𝐾𝐴𝑐

𝜃0𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝑃𝐿𝜃0
 

𝜂 =
𝐾𝐴𝑐√

ℎ𝑃
𝐾𝐴𝑐

𝑡𝑎𝑛ℎ𝑚𝐿

ℎ𝑃𝐿
 

𝜂 =
√𝐾𝐴𝑐
ℎ𝑃

𝑡𝑎𝑛ℎ𝑚𝐿

𝐿
 

𝜂 =

1
𝑚 𝑡𝑎𝑛ℎ𝑚𝐿

𝐿
 

𝜂 =
𝑡𝑎𝑛ℎ𝑚𝐿

𝑚𝐿
 

Biot number in fin: 
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It is defined as the ratio of ratio of heat transfer by convection and convection to specific heat transfer 

by conduction  

𝐵𝑖 =
ℎ
𝑘

𝛿

;               𝐵𝑖 =
ℎ𝛿

𝐾
 where h is the surface heat transfer coefficient , 𝛿 is thickness of the fin and K is 

the thermal conductivity of material  

If 𝐵𝑖 < 1 𝑡ℎ𝑒𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝜀 > 1 desirable  

If 𝐵𝑖 > 1 𝑡ℎ𝑒𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝜀 < 1 fin acts as insulator and it decreases hrate of heat transfer 

If 𝐵𝑖 = 1 𝑡ℎ𝑒𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝜀 = 1 Fin neither it will enhance or decrease the heat transfer It as good 

as no fin 

Case 3 and case 4 is less important 

A rod (K= 200 W/mK)  5 mm in diameter and 5 cm long has its one end maintained at 100 oC. The surface 

of the rod is exposed to ambient air at 25 oC with convection heat transfer coefficient of 100 

W/m2K. Assuming the other end is insulated. Determine i)the temperature of the rod at 20 mm 

distance from the end at 100 oC ii) Heat dissipation rate from the surface of the rod iii) 

effectiveness iv) Efficiency  of fin  

𝐾 = 200𝑊/𝑚𝐾,  𝑑 = 5𝑚𝑚 = 0.005𝑚, 𝑇𝑏 = 100
0𝐶; 𝑇∞ = 25

0𝐶; ℎ = 100𝑊/𝑚2𝐾,  other end is 

insulated i) T=? at x=20mm=0.02m ii) Q=? iii) 𝜖 =? 

𝑬𝒏𝒅 𝒊𝒔 𝑰𝒏𝒔𝒖𝒍𝒂𝒕𝒆𝒅  

i) 𝐹𝑟𝑜𝑚 𝐷𝑎𝑡𝑎 𝐻𝑎𝑛𝑑 𝐵𝑜𝑜𝑘, 𝑃𝑎𝑔𝑒 48 ,      
𝑇−𝑇∞

𝑇𝑏−𝑇∞
=
𝑐𝑜𝑠ℎ𝑚(𝐿−𝑥)

𝑐𝑜𝑠ℎ𝑚𝐿
 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                         𝐹𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑑   𝑚 = √

ℎ𝜋𝑑

𝑘
𝜋𝑑2

4

;       𝑚 = √
4ℎ

𝑘𝑑
 

𝑚 = √
4∗100

200∗0.005
  ;      𝑚 = 20 

𝑚𝐿 = 20 ∗ 0.05;   𝑚𝐿 = 1  

𝑇−𝑇∞

𝑇𝑏−𝑇∞
=
𝑐𝑜𝑠ℎ𝑚(𝐿−𝑥)

𝑐𝑜𝑠ℎ𝑚𝐿
;      

𝑇−25

100−25
=
𝑐𝑜𝑠ℎ20(0.05−0.02)

𝑐𝑜𝑠ℎ𝑚𝐿
;    𝑇 = 94.64𝑜𝐶 

ii) Rate of Heat Transfer 

𝐹𝑟𝑜𝑚 𝐷𝑎𝑡𝑎 𝐻𝑎𝑛𝑑 𝐵𝑜𝑜𝑘, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞)𝑡𝑎𝑛ℎ𝑚𝐿 

𝑃 = 𝜋𝑑 = 𝜋 ∗ 0.005 = 0.0157𝑚;     𝐴𝑐 =
𝜋𝑑2

4
=
𝜋0.0052

4
= 1.963 ∗ 10−5𝑚2 
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𝑄𝑤𝑖𝑡ℎ 𝑓𝑖𝑛 = √100 ∗ 0.0157 ∗ 200 ∗ 1.963 ∗ 10
−5(100 − 20)𝑡𝑎𝑛ℎ(1); 𝑄 = 4.4844𝑊 

Rate of Heat transfer =4.4844 Watts 

iii) Effectiveness of fin  

𝜖 =
𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡 𝑓𝑖𝑛
 

Heat Transfer without fin= ℎ𝐴𝑐(𝑇𝑏−𝑇∞) 
𝑄𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛 = 100 ∗ 1.963 ∗ 10

−5 ∗ (100 − 20); 𝑄𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛 = 0.0147225𝑊𝑎𝑡𝑡𝑠 

𝜖 =
𝑄𝑤𝑖𝑡ℎ 𝑓𝑖𝑛

𝑄𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛
;  𝜖 =

4.4844

0.0147225
   ;  𝜖 = 30.45 

iv) Efficiency of fin 

𝜂 =
𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑡 𝑏𝑎𝑠𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 

From Data Hand Book Page 49 

𝜂 =
𝑡𝑎𝑛ℎ𝑚𝐿

𝑚𝐿
;               𝜂 =

𝑡𝑎𝑛ℎ(1)

1
;          𝜂 = 0.7615 

2. A  steel rod (K= 30 W/mK ) 1 cm diameter and 5 cm long with insulation end is to be used as a 

spine. It is exposed to the surrounding temperature of 65 oC , and heat transfer coefficient of 50 

W/m2K. The temperature of the base is 98oC. Determine i) Fin efficiency ii)Temperature at the 

end of spine iii) Heat dissipation from spine  

3. A very long rod, 25 mm in diameter has one end maintained at 100 oC. The surface of the rod is 

exposed to ambient air at 25oC with Convection coefficient of 10 W/m2K .What are the heat 

losses from the rods, constructed of pure copper with K= 398 W/mK and stainless steel with 

K=14 W/mK ? Also, estimate how long the rods must be considered infinite  

A very Long fin 

Case I : Pure Copper 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                         𝐹𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑑   𝑚 = √

ℎ𝜋𝑑

𝑘
𝜋𝑑2

4

;       𝑚 = √
4ℎ

𝑘𝑑
;  𝑚 = √

4∗10

398∗0.025
= 2.005 

𝑃 = 𝜋𝑑 = 𝜋 ∗ 0.025 = 0.0785𝑚;     𝐴𝑐 =
𝜋𝑑2

4
=
𝜋0.0052

4
= 4.9087 ∗ 10−4𝑚2 

For Long fin, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞);   

 𝑄 = √10 ∗ 0.0785 ∗ 398 ∗ 4.9087 ∗ 10−4 (100 − 25); 𝑄 = 29.37𝑊𝑎𝑡𝑡𝑠 

how long the rods must be considered infinite 

To calculate length to be considered to be infinite  
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Take T is 0.01oC more than surrounding temperature ie 25.01oC 

𝑇−𝑇∞

𝑇𝑏−𝑇∞
= 𝑒−𝑚𝑥;       

25.01−25

100−25
= 𝑒−2.005𝑥;   𝑙𝑛

0.01

75
= 𝑒−2.005𝑥; −8.92 = 2.005𝑥;   𝑥 = 4.44𝑚 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 4.44𝑚 𝑡𝑜 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑟𝑜𝑑 𝑎𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 

 

Case I : Stainless Steel K=14W/mK 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                         𝐹𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑑   𝑚 = √

ℎ𝜋𝑑

𝑘
𝜋𝑑2

4

;       𝑚 = √
4ℎ

𝑘𝑑
;  𝑚 = √

4∗10

14∗0.025
= 10.69 

𝑃 = 𝜋𝑑 = 𝜋 ∗ 0.025 = 0.0785𝑚;     𝐴𝑐 =
𝜋𝑑2

4
=
𝜋0.0052

4
= 4.9087 ∗ 10−4𝑚2 

For Long fin, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞);   

 𝑄 = √10 ∗ 0.0785 ∗ 14 ∗ 4.9087 ∗ 10−4 (100 − 25); 𝑄 = 5.5𝑊𝑎𝑡𝑡𝑠 

how long the rods must be considered infinite 

To calculate length to be considered to be infinite  

Take T is 0.01oC more than surrounding temperature ie 25.01oC 

𝑇−𝑇∞

𝑇𝑏−𝑇∞
= 𝑒−𝑚𝑥;       

25.01−25

100−25
= 𝑒−2.005𝑥;   𝑙𝑛

0.01

75
= 𝑒−2.005𝑥; −8.92 = 10.69𝑥;   𝑥 = 0.8346𝑚 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 0.8346𝑚 𝑡𝑜 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑟𝑜𝑑 𝑎𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 

 

  

4. A very long rod, 25 mm in diameter (K=380W/mK) rod extends from a surface at 120 oC. The 

temperature of  surrounding  air at 25oC and the heat transfer over the rod is  10 W/m2K 

.calculate the heat losses from the rods, 

5. The Aluminum square fins( 0.6 mmx 0.6mm), 12 mm long are provided on the surface of a 

semiconductor electronics device to carry 2W of energy generated. The temperature at the 

surface of the device should not exceed 85 oC, when the surrounding is at 35oC .Given K= 200 

W/mK h =15 W/m2K. Determine the number of fins required to carry out the about duty. 

Neglect the heat loss from the end of the fin   
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6. Find the amount of heat transferred through an iron fin of thickness of 5mm, height 50 mm and 

width 100 cm. Also, determine the temperature difference ′𝜃′ at the tip of the fin assuming  

atmospheric temperature of 28 oC and base temperature of fin to be 108 oC.  Take  Kfin=50 W/mK  

Short rectangular fin End is not insulated  

              h =10 W/m2K  𝑡 = 5𝑚𝑚 = 0.005𝑚; 𝐿 = 50𝑚𝑚 = 0.05𝑚:𝑤 = 100𝑐𝑚𝑠 = 1𝑚;  

𝑖) 𝑄 =? 𝑖𝑖) 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑓𝑖𝑛 =? 𝑇 =?𝑎𝑡 𝑥 = 𝐿 = 0.05𝑚 

𝐾 = 50𝑊/𝑚𝐾; ℎ = 8𝑊/𝑚2𝐾; 𝑇𝑏 = 108
𝑜𝐶; 𝑇∞ = 28

𝑜𝐶 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                          

𝑃 = 2(𝑊 + 𝑡);    𝑃 = 2(1 + 0.005) ;   𝑃 = 2.01𝑚     

𝐴𝑐 = 𝑊 ∗ 𝑡 = 1 ∗ 0.005 = 0.005𝑚𝑚2 

 

𝑚 = √
10 ∗ 2.01

50 ∗ 0.005
= 8.966;      𝑚𝐿 = 8.966 ∗ 0.05 = 0.4483 

𝑡𝑎𝑛ℎ𝑚𝐿 = 𝑡𝑎𝑛ℎ0.4483 = 0.4205 

Page 49 Short fin not Insulated 

For Long fin, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞)
tanℎ𝑚𝐿+

ℎ𝐿
𝑚𝐾

1+
ℎ𝐿
𝑚𝐾
 𝑡𝑎𝑛ℎ𝑚𝐿

   

ℎ𝐿
𝑚𝐾

=
10

8.966 ∗ 50
= 0.0223 

𝑄 = √10 ∗ 2.01 ∗ 50 ∗ 0.005(108 − 28)
0.4206 + 0.0023

1 + (0.0023 ∗ 0.4205)
 

𝑄 = 7868𝑊𝑎𝑡𝑡𝑠 

ii) Temperature at the end of the fin 

𝑇 − 𝑇∞
𝑇𝑏 − 𝑇∞

=
𝑐𝑜𝑠ℎ𝑚(𝐿 − 𝑥) +

ℎ𝐿
𝑚𝐾𝑠𝑖𝑛ℎ𝑚

(𝐿 − 𝑥)

𝑐𝑜𝑠ℎ𝑚𝐿 +
ℎ𝐿
𝑚𝐾𝑠𝑖𝑛ℎ𝑚𝐿

 

𝑇 − 𝑇∞
𝑇𝑏 − 𝑇∞

=
𝑐𝑜𝑠ℎ𝑚(𝐿 − 𝐿) +

ℎ𝐿
𝑚𝐾 𝑠𝑖𝑛ℎ𝑚

(𝐿 − 𝐿)

𝑐𝑜𝑠ℎ𝑚𝐿 +
ℎ𝐿
𝑚𝐾 𝑠𝑖𝑛ℎ𝑚𝐿

 



Dr Abdul Sharief PACE Page 22 
 

𝑇 − 𝑇∞
𝑇𝑏 − 𝑇∞

=
1 +

ℎ𝐿
𝑚𝐾

(0)

𝑐𝑜𝑠ℎ𝑚𝐿 +
ℎ𝐿
𝑚𝐾 𝑠𝑖𝑛ℎ𝑚𝐿

 

𝑇 − 𝑇∞
𝑇𝑏 − 𝑇∞

=
1

𝑐𝑜𝑠ℎ𝑚𝐿 +
ℎ𝐿
𝑚𝐾 𝑠𝑖𝑛ℎ𝑚𝐿

 

𝑇 − 28

108 − 28
=

1

𝑐𝑜𝑠ℎ(0.4483) + 0.0223𝑠𝑖𝑛ℎ(0.4483)
 

𝑇 = 71.94𝑜𝐶 

Temperature at the end of the fin is 71.94𝑜𝐶 

Temperature at the tip of fin𝑇𝐿 − 𝑇∞ = 71.94 − 28 = 43.94
𝑜𝐶 

 

7.  Find the amount of heat transferred to an iron fin of thickness of 5 mm, height 50 mm and 

width 100 cm. Also determine the temperature difference θ at the tip of fin assuming 

atmospheric temperature of 28 oC and base temperature of fin to be 108 o C. Take Kfin =50 W/mK  

, h=10 W/m2 K  

8.  Determine the amount of heat transferred through an iron fin of thickness 5 mm, height 50 mm 

and width 100 centimeters. Also determine the temperature at the fin end of the tips of fin. 

Assuming atmospheric temperature of 28 oC. Take K=508 W/moC  h=8 W/m2 oC . Base fin 

temperature =108oC .    

 

 

At x=L 

10.  A motor Body is 360 mm in diameter (OD) and 240 mm long. Its surface temperature should not 

exceed 55oC when dissipating 340 watts. Longitudinal fins of 15 mm thickness and 40 mm height 

are produced. The convection heat transfer coefficient is 40 W/m2 o C . Determine the number of 

fins required.  Assume, the atmospheric temperature is 30oC for a finite fin 

Figure  
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Short fin end is not insulated  

              h =40 W/m2K  𝑡 = 15𝑚𝑚 = 0.015𝑚; 𝐿 = 40𝑚𝑚 = 0.04𝑚:𝑤 = 240𝑚𝑚 = 0.24𝑚;  

𝑄𝑇𝑜𝑡𝑎𝑙 = 340 𝑊𝑎𝑡𝑡𝑠  𝑇𝑏 = 55
𝑜𝐶; 𝑇∞ = 30

𝑜𝐶  

Assume K=43 W/mK since it is not given This value has taken from Data Book from properties of 

material 

𝑖) 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑛 =?  

𝐹𝑖𝑟𝑠𝑡 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡ℎ𝑟𝑟𝑜𝑢𝑔ℎ 𝑝𝑒𝑟 𝑓𝑖𝑛 𝑏𝑦 𝑠𝑢𝑠𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎  

𝑄𝑇𝑜𝑡𝑎𝑙 = 𝑛𝑄𝑓𝑖𝑛 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                          

𝑃 = 2(𝑊 + 𝑡);    𝑃 = 2(0.24 + 0.015) ;   𝑃 = 0.51𝑚     

𝐴𝑐 = 𝑊 ∗ 𝑡 = 0.24 ∗ 0.015 = 3.6 ∗ 10−3𝑚𝑚2 

 

𝑚 = √
40 ∗ 0.51

43 ∗ 0.015
= 11.47;      𝑚𝐿 = 11.47 ∗ 0.04 = 0.459 

𝑡𝑎𝑛ℎ𝑚𝐿 = 𝑡𝑎𝑛ℎ0.459 = 0.429 

Page 49 Short fin not Insulated 

For Long fin, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞)
tanℎ𝑚𝐿+

ℎ𝐿
𝑚𝐾

1+
ℎ𝐿
𝑚𝐾
 𝑡𝑎𝑛ℎ𝑚𝐿

   

ℎ𝐿
𝑚𝐾

=
40

11.47 ∗ 43
= 0.081 

𝑄𝑓𝑖𝑛 = √40 ∗ 0.51 ∗ 43 ∗ 3.6 ∗ 10
−3(55 − 30)

0.429 + 0.081

1 + (0.081 ∗ 0.429)
 

𝑄𝑓𝑖𝑛 = 38.91𝑊𝑎𝑡𝑡𝑠 

𝑄𝑇𝑜𝑡𝑎𝑙 = 𝑛𝑄𝑓𝑖𝑛;  340 = 𝑛 ∗ 38.91;   𝑛 = 8.7 

Hence number of fin required is 9 
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11.  A set of aluminium fins (K= 180 W/mo C) that are to be fitted to a small air compressor. The 

device dissipates 1 kW by convecting to the surrounding air which is at 20o C. Each fin is 100 mm 

long 30 mm high and 5 mm thick. The tip of each fin may be assumed to be adiabatic and a heat 

transfer coefficient of 15 W/m2 o C acts over the remaining surfaces. Estimate the number of fins 

required to ensure the base temperature does not exceed 120 o C     

Hint: End of the fin is insulated  

𝑄𝑡𝑜𝑡𝑎𝑙 = 1𝑘𝑊 = 1000𝑊𝑎𝑡𝑡𝑠 

 

𝑄𝑇𝑜𝑡𝑎𝑙 = 𝑛𝑄𝑓𝑖𝑛 

𝐹𝑜𝑟 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑓𝑖𝑛 𝑤𝑖𝑡ℎ 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑛 𝑖𝑠 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑  

𝑄𝑓𝑖𝑛 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞)𝑡𝑎𝑛ℎ𝑚𝐿 

Number of fin=
𝑄𝑇𝑜𝑡𝑎𝑙

𝑄𝑓𝑖𝑛
 

12.  In order to reduce the thermal resistance at the surface of a vertical plane wall (50x50cm) , 100 

fins (1cm diameter, 10cm long) are attached. If the pin fins are made of copper having a thermal 

conductivity of 300W/mK and the value of the surface heat transfer coefficient is 15 W/m2K, 

calculate the decrease in the thermal resistance. Also calculate the consequent increase in heat 

transfer rate from the wall if it is maintained at a temperature of 200oC and the surroundings 

are at 30oC  

D=1cm=0.01m; = 10𝑐𝑚 = 0.1𝑚; 𝑛𝑜 𝑜𝑓 𝑓𝑖𝑛𝑠 𝑛 = 100;𝐾 = 300𝑊/𝑚𝐾; ℎ = 15𝑊/𝑚2𝐾;  

𝑇𝑏 = 200
𝑜𝐶; 𝑇∞ = 30

𝑜𝐶 

i)  𝐹𝑟𝑜𝑚 𝐷𝑎𝑡𝑎 𝐻𝑎𝑛𝑑 𝐵𝑜𝑜𝑘, 𝑃𝑎𝑔𝑒 48 ,      
𝑇−𝑇∞

𝑇𝑏−𝑇∞
=
𝑐𝑜𝑠ℎ𝑚(𝐿−𝑥)

𝑐𝑜𝑠ℎ𝑚𝐿
 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
;                         𝐹𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑑   𝑚 = √

ℎ𝜋𝑑

𝑘
𝜋𝑑2

4

;       𝑚 = √
4ℎ

𝑘𝑑
 

𝑚 = √
4∗15

300∗0.01
  ;      𝑚 = 4.47 

𝑚𝐿 = 4.47 ∗ 0.1;   𝑚𝐿 = 0.447 

ii) Rate of Heat Transfer 

𝐹𝑟𝑜𝑚 𝐷𝑎𝑡𝑎 𝐻𝑎𝑛𝑑 𝐵𝑜𝑜𝑘, 𝑄 = √ℎ𝑃𝐾𝐴𝑐(𝑇𝑏−𝑇∞)𝑡𝑎𝑛ℎ𝑚𝐿 
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𝑃 = 𝜋𝑑 = 𝜋 ∗ 0.005 = 0.0157𝑚;     𝐴𝑐 =
𝜋𝑑2

4
=
𝜋0.0052

4
= 1.963 ∗ 10−5𝑚2 

𝑄𝑤𝑖𝑡ℎ 𝑓𝑖𝑛 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑓𝑖𝑛 = √15 ∗ 0.0157 ∗ 300 ∗ 1.963 ∗ 10
−5(200 − 30)𝑡𝑎𝑛ℎ(0.447); 𝑄 = 7.48𝑊𝑎𝑡𝑡𝑠 

Rate of Heat transfer/fin =7.48𝑊𝑎𝑡𝑡𝑠 

Heat transfer for 100fins from vertical plane =748 Watts 

Heat transfer through unfinned area from the vertical plane (5ocmx50cm) =ℎ𝐴𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 (𝑇𝑏 − 𝑇∞) 

𝐴𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = 𝐴 − 𝐴𝑓; 𝐴𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = (𝐿 ∗ 𝑊) − 𝑛 (
𝜋𝑑2

4
);  

𝐴𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = (0.5 ∗ 0.5) − 100(
𝜋 ∗ 0.012

4
) 

𝐴𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = 0.2421𝑚
2 

𝑄𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 = 8.5 ∗ 0.2421 ∗ (200 − 30); 𝑄𝑢𝑛𝑓𝑖𝑛𝑛𝑒𝑑 = 349.83𝑊𝑎𝑡𝑡𝑠 

Total Heat transfer from vertical plane = Heat transfer from vertical plane  through 100fins+ Heat 

transfer from unfinned area of vertical palne 

𝑄 = 748 + 349.83 = 2069.83𝑊𝑎𝑡𝑡𝑠  

Thermal resistance =
∆𝑇

𝑄
 

Thermal resistance  𝑤𝑖𝑡ℎ 𝑓𝑖𝑛 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑅1 =
200−30

2069.83
= 0.0821 

Heat Transfer from the surface without fins attached = ℎ𝐴(𝑇𝑏 − 𝑇∞) 

Heat Transfer from the surface without fins attached = 8.5 ∗ (0.5 ∗ 0.5) ∗ (200 − 30) 

Heat Transfer from the surface without fins attached=361.25Watts 

Thermal resistance  𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑛 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑅2 =
200−30

361.25
= 0.469 

Decrease in thermal resistance due to 100 fins attached =0.469 − 0.821 = 

 

13. A thin rod of copper K=100 W/mK , 12.5 mm in diameter spans between two parallel plates 150 

mm apart .Air Flows over the rod providing a heat transfer coefficient of 50 W/m2K. The surface 

temperature of the plate exceeds air by 40 oC .Determine the excess temperature at the centre of the 

rod over that of air and  ii)Heat lost from the rod in in watts. 
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Unsteady Heat Transfer 

1. What is lumped system analysis? Derive an expression for temperature distribution and rate of 

heat transfer in case of lumped system analysis (3a, 08, June/July18,3a, 10, June/July18) 

2. Derive an expression for temperature distribution in lumped system (3b,08/June/July17) 

3.  Obtain an expression for instantaneous heat transfer and total heat transfer for lumped heat 

analysis treatment heat conduction problems (3a, 08M June/July13) 

4. Derive the expressions of temperature variation, instantaneous heat transfer and total heat 

transferred for one dimensional transient heat conduction 

5. Derive the expressions of temperature variation, heat flow using Lumped Parameter Analysis 

(4a, 6,June/July 18)  

6. Obtain an expression for instantaneous heat transfer and total heat transfer for lumped heat 

analysis treatment  of heat conduction problem (3a, 10,June/July 16) 

7. Obtain an expression for  instantaneous heat transfer and total heat transfer using lumped heat 

analysis for unsteady state heat transfer from a body to the surroundings (3a, 10,Dec16/Jan17 

8. Derive an expression for  instantaneous heat transfer and total heat transfer in terms of product 

of Biot number and Forier number is one  dimensional transient heat conduction. (3b,08, 

Dec14/Jan15) 

9. Show that the temperature distribution under lumped analysis is given by initial temperature 

ambient temperature 
𝑇−𝑇𝑎

𝑇𝑖−𝑇𝑎
= 𝑒−𝐵𝑖𝐹𝑛  where 𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  and 𝑇𝑎 =

𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (3a,10m,Dec15/Jan16, 4a,08, Dec18/Jan19) 

10. Show that the temperature distribution in a body during Newtonian heating or cooling is given by 
𝑇−𝑇𝑎

𝑇𝑖−𝑇𝑎
=
𝜃

𝜃𝑖
= 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝑡

𝜌𝐶𝑉
} (3a,6,Dec13/Jan14) 
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11.  Explain physical significance of Biot and fourier numbers 06 M June/July13, Fourier number (3a, 04, 

June/July17) 

12. Define Biot number and Fourier number s (3a,02,Dec14/Jan15,3a,03,Dec17/Jan18, 4b, June/July18) 

13. Write a short note on Biot number and Fourier number (3b, 04, June/July16) 

14. What are Biot and Fourier numbers? Explain the physical significance of Biot number and fourier 

number (3b, 06, June/July13) (3a,04,June/July15)( 3a,06,June/July14)(3b, 04,Dec18/Jan19) 

Transient Heat Conduction 

Unsteady conduction heat transfer is the conduction heat transfer in which heat transfer varies with 

respect to the time. Here temperature varies with the time 

𝑄 = 𝑓(𝑥, 𝜏) is the mathematical representation of One Dimensional unsteady Heat transfer where 𝜏 is 

the time 

𝑇 = 𝑓(𝑥, 𝜏) 

Transient heat conduction problems can be divided into periodic and non periodic heat flow problems  

Periodic heat flow problems are those in which the temperature varies on a regular basis,ex: the 

variation of temperature of the surface of the earth during a 24 hrs 

Tin the Non periodic type the temperature at any point varies non linearly with time.  

Lumped Analysis: ( Applicable only if 𝑩𝒊 < 0.1) 

Heat transfer in heating or cooling of a body is dependent upon both the internal resistance 
𝐿

𝑘𝐴
  and 

surface resistances 
1

ℎ𝐴
  

When the body material is having large thermal conductivity , surface resistances 
1

ℎ𝐴
 is larger compared  

Internal resistance 
𝐿

𝑘𝐴
  . Hence Internal resistance 

𝐿

𝑘𝐴
 is negligible. In this case there is no variation of 

temperature inside the solid. Hence Temperature is function of time only 

Ie 𝑇 = 𝑓(𝜏) 

The process in which the internal resistance 
𝐿

𝑘𝐴
 is ignored being negligible in comparison with its surface 

resistance is called Newtonian heating or cooling process. Such analysis is also called Lumped heat 

capacity analysis 

Derivation for Lumped heat analysis: 
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Consider a solid Area A m2 , with initial temperature To throughout is suddenly placed in a an 

environment 𝑇∞ as shown in figure  

 

According to energy balance 

Amount of Heat convected to the body from environment = Increase in internal energy of the solid 

ℎ𝐴(𝑇∞ − 𝑇) = 𝑚𝐶
𝑑𝑇

𝑑𝜏
 where m , C ,T , 𝜏 are the mass , Specific heat, Temperature and time respectively 

ℎ𝐴(𝑇∞ − 𝑇) = 𝜌𝑉𝐶
𝑑𝑇

𝑑𝜏
 

−
ℎ𝐴

𝜌𝑉𝐶
(𝑇 − 𝑇∞) =

𝑑𝑇

𝑑𝜏
 

𝑑𝑇

𝑑𝜏
+
ℎ𝐴

𝜌𝑉𝐶
(𝑇 − 𝑇∞) = 0 

 

ℎ𝐴

𝜌𝑉𝐶
=  𝑚 where m is the constant and let 𝜃 = 𝑇 − 𝑇∞ then  

𝑑𝜃

𝑑𝜏
=
𝑑𝑇

𝑑𝜏
− 0 ie  

𝑑𝑇

𝑑𝜏
=
𝑑𝜃

𝑑𝜏
 

Hence eqn 1 can be written as 

𝑑𝜃

𝑑𝜏
+𝑚𝜃 = 0 

Above is the first order homogeneous differential equation . Hence solution for above equation is  

 

V = volume 

A=surface area 

ρ = density 

Cp = specific heat 

k = conductivity 

Surface in contact with fluid at  

T∞ with surface heat transfer  

Coefficient h  

 Nomenclature for lumped system analysis of transient 

              Conduction heat transfer 
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𝜃 = 𝐶𝑒−𝑚𝜏 −−−−−−− 1 

Using initial condition ie At = 0 , 𝜃 = 𝜃𝑜 = 𝑇𝑜 − 𝑇∞ 

Substituting above initial condition in 1 

𝜃𝑜 = 𝐶𝑒
𝑜 

Ie 𝐶 = 𝜃𝑜 

Substituting C in 1 

𝜃 = 𝜃𝑜𝑒
−𝑚𝜏 

𝑇 − 𝑇∞ = (𝑇𝑜 − 𝑇∞)𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

= 𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

ℎ𝐴𝜏

𝜌𝑉𝐶
=
ℎ𝜏

𝜌𝐿𝐶
=
ℎ
𝐿
𝐾 𝜏

𝜌𝐿𝐶
𝐿
𝐾

=
ℎ
𝐿
𝐾 𝜏

𝐿2
𝜌𝐶
𝐾

=
𝐵𝑖𝜏

𝐿2
1
𝛼

=
𝐵𝑖𝛼𝜏

𝐿2
= 𝐵𝑖𝐹𝑛 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

= 𝑒−𝐵𝑖𝐹𝑛 

Above Equation is Temperature distribution equation in terms of Fourier Number and Biot Number 

Instantaneous Heat Transfer Rate in Lumped Analysis 

𝑄𝑖 = 𝑚𝐶
𝑑𝑇

𝑑𝜏
 

𝑄𝑖 = 𝜌𝑉𝐶
𝑑𝑇

𝑑𝜏
 

𝑇 − 𝑇∞
𝑇𝑜 − 𝑇∞

= 𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

𝑇 − 𝑇∞ = (𝑇𝑜 − 𝑇∞)𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

Differentiating above equation 

𝑑𝑇

𝑑𝜏
− 0 = (𝑇𝑜 − 𝑇∞) (−

ℎ𝐴

𝜌𝑉𝐶
) 𝑒

−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

𝑑𝑇

𝑑𝜏
= (𝑇𝑜 − 𝑇∞) (−

ℎ𝐴

𝜌𝑉𝐶
)𝑒

−
ℎ𝐴
𝜌𝑉𝐶

𝜏
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𝑄𝑖 = 𝜌𝑉𝐶(𝑇𝑜 − 𝑇∞) (−
ℎ𝐴

𝜌𝑉𝐶
) 𝑒

−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

𝑄𝑖 = −(𝑇𝑜 − 𝑇∞)ℎ𝐴𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
 

Total Heat transfer  

𝑄𝑡 = ∫ 𝑄𝑖

𝜏

0

𝑑 𝜏 

𝑄𝑡 = −(𝑇𝑜 − 𝑇∞)ℎ𝐴∫ 𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
𝜏

0

𝑑 𝜏 

𝑄𝑡 = −(𝑇𝑜 − 𝑇∞)ℎ𝐴 (
𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏

−
ℎ𝐴
𝜌𝑉𝐶

)

0

𝜏

      

𝑄𝑡 = 𝜌𝑉𝐶(𝑇𝑜 − 𝑇∞) (𝑒
−
ℎ𝐴
𝜌𝑉𝐶

𝜏
− 1)       

Mixed Boundary Condition in Lumped Analysis 

Consider one part of the body is subjected to Convection while remainder part is subjected to heat flux 

as shown in fig 

 

 

 

 

 

 

 

 

Consider a slab of thickness initially at 𝑇0 . For 𝜏 > 0 heat is supplied 𝑞 𝑊/𝑚2 at the  boundary at x=0 

while heat is dissipated by convection from other boundary at x=L with heat transfer coefficient h and 

Exposed to environment 𝑇∞. Let T be the temperature of the body for 𝜏 > 0 

According to Heat balance 
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Heat supplied at heat flux side + Heat supplied by convection at the other boundary surface= Change in 

Internal Energy of the body 

Consider Area equal on both sides (Heat flux side and Convection Heat Transfer side )  

𝐴𝑞 + ℎ𝐴(𝑇∞ − 𝑇) = 𝑚𝐶
𝑑𝑇

𝑑𝜏
 

𝐴𝑞 + ℎ𝐴(𝑇∞ − 𝑇) = 𝜌𝑉𝐶
𝑑𝑇

𝑑𝜏
 for 𝜏 > 0 with initial Condition 𝑇(𝜏) = 𝑇𝑜 for 𝜏 = 0 

𝐴𝑞

𝜌𝑉𝐶
−
ℎ𝐴

𝜌𝑉𝐶
(𝑇 − 𝑇∞) =

𝑑𝑇

𝑑𝜏
 

𝐴𝑞

𝜌𝑉𝐶
=
𝑑𝑇

𝑑𝜏
+

ℎ𝐴

𝜌𝑉𝐶
(𝑇 − 𝑇∞)------1 

Let 𝜃 = (𝑇 − 𝑇∞)  hence         
𝑑𝜃

𝑑𝜏
=
𝑑𝑇

𝑑𝜏
− 0;    

𝑑𝜃

𝑑𝜏
=
𝑑𝑇

𝑑𝜏
 

𝐴𝑞

𝜌𝑉𝐶
= 𝑄    and  

ℎ𝐴

𝜌𝑉𝐶
= 𝑚 

Hence equation can be written as 

𝑄 =
𝑑𝜃

𝑑𝜏
+𝑚𝜃 for 𝜏 > 0  with initial condition 𝜃 = 𝜃0 = 𝑇𝑜 − 𝑇∞ at 𝜏 = 0 

Above equation is first order homogeneous differential equation and solution for above equation is 

 𝜃 = 𝐶𝑒−𝑚𝜏 +
𝑄

𝑚
   ---------------2 

initial condition 𝜃 = 𝜃0 = 𝑇𝑜 − 𝑇∞ at 𝜏 = 0 

substituting initial condition in equation 2 

𝜃0 =  𝐶𝑒
−0 +

𝑄

𝑚
 

𝜃0 =  𝐶 +
𝑄

𝑚
 

𝐶 = 𝜃0 −
𝑄

𝑚
 

Substituting C in equation2  

𝜃 = (𝜃0 −
𝑄

𝑚
)𝑒−𝑚𝜏 +

𝑄

𝑚
 

𝜃 = 𝜃0𝑒
−𝑚𝜏 +

𝑄

𝑚
(1 − 𝑒−𝑚𝜏) 
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Where 𝜃 =  𝑇 − 𝑇∞;   𝜃0 = 𝑇𝑜 − 𝑇∞; 
𝐴𝑞

𝜌𝑉𝐶
= 𝑄    and  

ℎ𝐴

𝜌𝑉𝐶
= 𝑚 

𝑄

𝑚
=

𝐴𝑞

𝜌𝑉𝐶
ℎ𝐴

𝜌𝑉𝐶

;   
𝑄

𝑚
=
𝑞

ℎ
 

 𝑇 − 𝑇∞ = (𝑇𝑜 − 𝑇∞)𝑒
−𝑚𝜏 +

𝑞

ℎ
(1 − 𝑒−𝑚𝜏)  

Above is the temperature distribution equation  

Above all analysis is Applicable only if 𝑩𝒊 < 0.1 

 One-dimensional Transient Conduction ( Use of Heissler’s Charts): 

 There are many situations where we cannot neglect internal temperature gradients in a solid while 

analyzing transient conduction problems. Then we have to determine the temperature distribution 

within the solid as a function of position and time and the analysis becomes more complex. However the 

problem of one-dimensional transient conduction in solids without heat generation can be solved 

readily using the method  of separation of variables. The analysis is illustrated for solids subjected to 

convective boundary conditions and the solutions  were  presented in the form of transient – 

temperature charts 

by Heissler. These charts are now familiarly known as “Heissler’s charts”. 

consider a slab of thickness 2L, which is initially at a uniform temperature Ti. Suudenly let the solid be 

exposed to an environment which is maintained at a uniform temperature of T∞ with a surface heat 

transfer coefficient of h for time t > 0.Fig.4.3 shows the geometry , the coordinates and the boundary 

conditions  for the problem. Because of symmetry in the problem with respect to the centre of the slab 

the ‘x’ coordinate is measured from the centre line of the slab as shown in the figure. 
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The mathematical formulation of this transient conduction problem is given  as follows: 

 

Governing differential equation:  
𝜕 2𝑇

𝜕 x2
=
1

α
 
∂T

∂τ
    -----------------1 

 

Initial condition : at t = 0, T = Ti  in 0 < x < L  

 

Boundary conditions are :  

                       

 (i) at x = 0, 
∂T

∂x
 = 0 (axis of symmetry) for all t > 0) 

 

(ii) at x = L,              − k(
∂T

∂x
)
x = L 

 =  h(T|x = L − T∞)      for all t > 0  

It is more convenient to analyze the problem by using the Dimentionless variables 

As given  

 θ(x,t), =
𝑇(𝑥,𝜏)−𝑇∞

𝑇𝑖−𝑇∞
   Dimensionless temperature 

𝑋 =
𝑥

𝐿
    Dimensionless length 

𝐵𝑖 =
ℎ𝐿

𝐾
  Biot Number  

𝐹𝑛 =
𝛼𝜏

𝐿2
  Dimensionless time or Fourier Number 

The heat conduction equation becomes 

 x 

  2L 

T = Ti at t = 0 

T = T(x,t) 

Surfaces 

exposed to a 

fluid at T∞ with 

heat transfer 

coefficient h for 

time t>0 

Geometry, coordinates and boundary conditions for transient  

             conduction in a slab 
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𝜕 2𝜃

𝜕 X2
= 

∂𝜃

∂𝐹𝑛
    𝑓𝑜𝑟 0 < 𝑋 < 1 𝑓𝑜𝑟 𝐹𝑛 > 0 

∂θ

∂X
 = 0        at 𝑋 = 0 and 𝑓𝑜𝑟 𝐹𝑛 > 0 

∂θ

∂X
+ 𝐵𝑖 𝜃 = 0 at 𝑋 = 0 and 𝑓𝑜𝑟 𝐹𝑛 > 0 

𝜃 = 1 𝑖𝑛 0 ≤ 𝑋 ≤ 1   𝑓𝑜𝑟 𝐹𝑛 = 0 

In above dimensionless equations the temperature depends only X, 𝐵𝑖, 𝐹𝑛 

And dimensionless equations are solved by using separating variables and presented in the form of 

Charts which is called as Heissler’s Charts   

Transient-Temperature charts for Long cylinder and sphere: The dimensionless transient-temperature 

distribution and the heat transfer results  for infinite cylinder and sphere can also be represented in the 

form of charts as in the case of slab. For infinite cylinder and sphere the radius of the outer surface R is 

used as the characteristic length so that the Biot number is defined as Bi = hR / k and the dimensionless 

distance from the centre is r/R where r is any radius (0 ≤ r ≤ R).These charts are illustrated in Data Hand 

Book 

Transient conduction in semi-infinite solids:- 

 A semi-infinite solid is an idealized body that has a single plane surface and extends to infinity in all 

directions. The earth for example, can be considered as a semi-infinite solid in determining the variation 

of its temperature near its surface 

  Theare three cases as follows 

Case 1:-  The solid is initially at a uniform temperature Ti and suddenly at time 𝜏 > 0 , the boundary-

surface temperature of the solid is changed to and maintained at a uniform temperature T0 which may 

be greater or less than the initial temperature Ti. 

Case2:- The solid is initially at a uniform temperature Ti and suddenly at time 𝜏 > 0  the boundary 

surface of the solid is subjected to a uniform heat flux of q0 W/m2. 

Case 3:- The solid is initially at a uniform temperature Ti. Suddenly at time t>0 the boundary surface is 

exposed to an ambience at a uniform temperature T∞ with the surface heat transfer coefficient h. T∞ 

may be higher or lower than Ti. 

Solution to Case  1:- The schematic for problem 1 is shown in Fig. 4.10. The mathematical formulation of 

the problem  to determine the unsteady temperature distribution in an infinite solid T(x,t) is as follows:  

The governing differential equation is  

 
𝜕 2𝑇

𝜕 x2
=
1

α
 
∂T

∂τ
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The initial condition is at time t = 0, T(x,0) = Ti    

and the boundary condition is at x = 0, T(0,t) = T0 

It is convenient to solve the above problem in terms of the dimensionless temperature 

θ(x,t), =
𝑇(𝑥,𝜏)−𝑇∞

𝑇𝑖−𝑇∞
 

𝜕 2𝜃

𝜕 x2
=
1

α
 
∂𝜃

∂τ
    𝑓𝑜𝑟 0 < 𝑥 < ∞ 𝑓𝑜𝑟 𝜏 > 0 

 

 

 

The initial condition will be at time t = 0, θ(x,0) = Ti − T∞  

And the boundary condition will be at x = 0, θ(0,t) = T0 − T∞  

 

This problem has been solved analytically and the solution θ(x,t) is represented graphically as θ(x,t) as a 

function of the dimensionless variable 
𝑥

2√𝛼𝜏
as shown in Data Hand Book  

 In engineering applications, the heat flux at the boundary surface x = 0 is also of interest. The analytical 

expression for heat flux at the surface is given by 

                                                        𝑞𝑠(𝜏)  =
𝐾(𝑇𝑜−𝑇𝑖)

√𝜋𝛼𝜏
         

x 

Initially (t=0), solid at Ti 

   

0 

For t > 0, the surface at T0 

 Fig. 4.10: Semi-infinite solid with specified surface temperature T0 for t > 0 
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Dimensionless temperature         θ(x,t), =
𝑇(𝑥,𝜏)−𝑇∞

𝑇𝑖−𝑇∞
 is plotted against 𝜉 =

𝑥

2√𝛼𝜏
 and given in Data Hand 

Book                                      

 

Solution to case2:- The schematic for this problem is shown in Fig.  

 

 

 

 

 

 

 

Governing differential equation in terms of  T(x,t)  and the initial condition are same that for case 1  

The boundary condition at x=o      is  − k(
∂T

∂x
)
x = L 

 =  𝑞𝑜 

The temperature distribution  within the solid T(x,t) is given by  

T(x, t) = 𝑇𝑖 +
2𝑞𝑜

𝐾
√𝛼𝜏 (

1

√𝜋
𝑒𝑥𝑝(−𝜉2) + 𝜉𝑒𝑟𝑓(𝜉) − 𝜉)                                                      

where ξ = 
𝑥

2√𝛼𝜏
 and     erf (ξ)= 

2

√𝜋
 ∫ 𝑒−𝑦

2𝜉

0
𝑑𝑦                                 

T(x,t) = Ti at t = 0 

 

q0  W/m2 

 

for t > 0 

An infinite solid subjected to a constant heat flux at x = 0 for t > 0 

x 
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Here erf (ξ) is called the “error function” of argument ξ and its values for different values of ξ are 

tabulated. 

Solution to Problem 3 :- The solid is initially at a uniform temperature Ti and suddenly for t >0 the 

surface at x = 0 is brought in contact with a fluid at a uniform temperature T∞ with a surface heat 

transfer coefficient h. For this problem the solution is represented in the form of a plot where the 

dimensionless temperature [1 − θ(x,t)] is plotted against dimensionless distance 
𝑥

√𝛼𝜏
, using 

ℎ√𝛼𝜏

𝑘
  as the 

parameter. It can be noted that the case h → ∞ is equivalent to the boundary surface ay x = 0 

maintained at a constant temperature T∞. 

Dimensionless Numbers in Transient Heat Transfer  

Biot Number : I tis defined the ratio of heat transfer coefficient at the surface of solid  to specific 

conductance of the solid  

𝐵𝑖 =
ℎ

𝐾
𝐿

 

𝐵𝑖 =
ℎ𝐿

𝐾
 where h is the heat transfer coefficient at the surface of the body , K thermal conductivity of the 

solid body , L is the Characterstic length.  

Biot Number signifies whether internal resistance 
𝐿 

𝐾𝐴
    is negligible in transient heat conduction or not 

negligible 

If Biot Number less than 0.1 , transient heat conduction can be analyzed as Lumped Analysis or else 

surface resistance  

Fourier Number: is Dimensionless time : It is defined as the rate of heat conduction in Volumeacross 

chercterstic length to rate of heat storage in Volume  

𝐹𝑛 =
rate of heat conduction in Volume across chercterstic length 

rate of heat storage in Volume
 

𝐹𝑛 =

𝐾𝐴
𝐿
𝜌𝑉𝐶
𝜏

 

𝐹𝑛 =

𝐾𝐿2

𝐿
𝜌𝐿3𝐶
𝜏

=
𝐾𝜏

𝜌𝐶𝐿2
=
𝛼𝜏

𝐿2
 

𝐹𝑛 =
𝛼𝜏

𝐿2
 where 𝛼 𝑖𝑠 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 , L is the Charecterstic length , 𝜏 is the time period  
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Fourier number is the measure of heat transfer due to conduction in comparison with the rate of  heat 

storage in volume. Larger the Fourier number deeper  the penetration into the solid over a given period 

Charecterstic Length 

For Slab 

𝐿 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐴𝑟𝑒𝑎
  where V is the Volume of the body A is the heat transfer area  

For slab if Both area is exposed to environment Heat Transfer Area 2A where is the Area of one surface  

If Thickness is 2L , then Volume = Surface Area x thickness ie V=2L*A 

𝐿𝐶 =
2𝐴𝐿

2𝐴
 

𝐿𝐶 = 𝐿 =
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
 

For slab if one surface  area is exposed to environment Heat Transfer Area A where A is the Area of one 

surface  

If Thickness is 2L , then Volume = Surface Area x thickness ie V=2L*A 

𝐿𝐶 =
𝐴𝐿

2𝐴
 

𝐿𝐶 =
𝐿

2
= 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

For Long Cylinder 

𝐿𝐶 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐴𝑟𝑒𝑎
 

𝐿𝐶 =
𝜋𝑅2𝐿

2𝜋𝑅𝐿
 

𝐿𝐶 =
𝑅

2
  

Note In lumped Analysis 𝐿𝐶 =
𝑅

2
 

But for Heissler Charts 𝐿𝐶 = 𝑅 
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Small Cylinder where Length is Known 

𝐿𝐶 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐴𝑟𝑒𝑎
 

𝐿𝐶 =
𝜋𝑅2𝐿

2𝜋𝑅𝐿 + 2𝜋𝑅2
 

For Sphere 

𝐿𝐶 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐴𝑟𝑒𝑎
 

𝐿𝐶 =

4
3𝜋𝑅

3

4𝜋𝑅2
 

𝐿𝐶 =
𝑅

3
 

For Lumped Analysis  𝐿𝐶 =
𝑅

3
 

Note that for Heissler Chart 𝐿𝐶 = 𝑅 

For Cube  

𝐿𝐶 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐴𝑟𝑒𝑎
 

𝐿𝐶 =
𝑎3

6𝑎
 

𝐿𝐶 =
𝑎3

6𝑎2
 

𝐿𝐶 =
𝑎

6
 where a is the side of Cube 
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1. A steel ball of 5 cm diameter at 450oC is suddenly placed in a controlled environment of 100 oC, 

Considering the following data, find the time required for the ball to attain a temperature of 150 

oC  Take Cp=450 J/Kg K, K= 35 W/mK h =10 W/m2K  𝜌 =8000 kg/m3 (3b,06,June/July15 ) 

2.  A 15 mm diameter mild steel Sphere ( K =42 W/mo C) is exposed to cooling air flow at 20 o C 

resulting in the convective heat transfer Coefficient at h=120 W/m2 o C. Determine the following 

i) Time required to cool the sphere from 550oC to 90oC .ii ) Instantaneous heat transfer rate 2 

minutes after start of cooling iii) Total energy stored from the sphere during the first 2 minutes 

For mild steel take : 𝜌 =7850 kg /m3 Cp=475J/ kg K, α=0.045 m2/hr.(3b, 10, Dec15/Jan16) 

Add question iv) What is the Rate of cooling after 2 min 

𝐵𝑖 =
ℎ𝐿𝑐

𝐾
; 𝐿𝑐 =

𝑉

𝐴
 where V is the Volume , A = Area of Heat Transfer  

𝐹𝑜𝑟 𝑆𝑝ℎ𝑒𝑟𝑒 , 𝑉 =
4 

3
𝜋𝑅3; 𝐴 = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = 4 𝜋𝑅2;  Hence 𝐿𝑐 =

4 

3
𝜋𝑅3

 4 𝜋𝑅2
=
𝑅

3
 

𝑅 =
𝐷

2
=
15

2
= 7.5𝑚𝑚 = 0.0075𝑚; 𝐿𝑐 =

0.0075

3
=0.0025 

𝐵𝑖 =
120

42
∗
0.075

3
; 𝐵𝑖 = 0.00714  

𝐵𝑖 < 0.1 ; Hence Lumped Analysis equation is to be used 

𝑇−𝑇∞

𝑇0−𝑇∞
= 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} ;   where 𝑇0 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , 𝜏 is the time in sec 

𝑇−𝑇∞

𝑇0−𝑇∞
= 𝑒𝑥𝑝 {

−ℎ𝜏

𝜌𝐿𝑐𝑉
}  since 

𝐴

𝑉
=

1

𝐿𝑐
 

𝑇0 = 550
𝑜𝐶; 𝑇 =  90𝑜𝐶; 𝑇∞ = 20

𝑜𝐶;  ℎ =
120𝑊

𝑚2𝐶
;  𝜏 =? 

90−20

550−20
= 𝑒

−(
120∗𝜏

7850∗475∗0.025
)
;         𝑙𝑛

70

530
= −(

120∗𝜏

7850∗475∗0.0025
);               −2.0243 = −1.287 ∗ 10−2𝜏 

𝜏 = 157.288 𝑠𝑒𝑐; 

ii) 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠  ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑄𝑖 =?𝑎𝑓𝑡𝑒𝑟 2𝑚𝑖𝑛 𝜏 = 2𝑚𝑖𝑛 

Temperature after 2 min T=? 

𝑇−𝑇∞

𝑇0−𝑇∞
= 𝑒𝑥𝑝 {

−ℎ𝜏

𝜌𝐿𝑐𝑉
};    

𝑇−20

550−20
= 𝑒

−(
120∗120

7850∗475∗0.025
)
;   𝑇 = 133.08𝑜𝐶 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠  ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑄𝑖 = ℎ𝐴𝑠(𝑇 − 𝑇∞) 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠  ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑎𝑓𝑡𝑒𝑟2𝑚𝑖𝑛    𝑄𝑖 = 120 ∗ (4 ∗ 𝜋 ∗ 0.0075
2)(133.08 − 20) 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠  ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑎𝑓𝑡𝑒𝑟2𝑚𝑖𝑛    𝑄𝑖 = 9.591𝑊𝑎𝑡𝑡𝑠 
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iii) Total Heat transfer after 2min  

𝑄𝑇 =  𝜌𝐶𝑉(𝑇 − 𝑇0) Page 57 equation in Transient Heat conduction equation  

𝑄𝑇 =  7850 ∗ 475 ∗ (
4

3
𝜋 ∗ 0.00253) (133.08 − 550); 𝑄𝑇 = −107.747 𝑤𝑎𝑡𝑡𝑠  

Negative sign indicates heat is transferred from body to environment  

Rate of cooling after 2 minute 

𝑇 − 𝑇∞
𝑇0 − 𝑇∞

= 𝑒𝑥𝑝 {
−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} 

𝑇 − 𝑇∞ = (𝑇0 − 𝑇∞) 𝑒𝑥𝑝 {
−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} 

Differentiating above equation with respect to time   
𝑑𝑇

𝑑𝜏
− 0 = (𝑇0 − 𝑇∞)

−ℎ𝐴𝑠

𝜌𝐶𝑉
 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} 

𝑑𝑇

𝑑𝜏
= (550 − 20)

−(120 ∗ (4 ∗ 𝜋 ∗ 0.00752))

7850 ∗ 475 ∗ (
4
3
𝜋 ∗ 0.00253)

 𝑒𝑥𝑝 {
−(120 ∗ (4 ∗ 𝜋 ∗ 0.00752) ∗ 120)

7850 ∗ 475 ∗ (
4
3
𝜋 ∗ 0.00253)

} 

𝑑𝑇

𝑑𝜏
= 530 ∗ (−0.01287) 𝑒𝑥𝑝(−0.01287 ∗ 120) 

𝑑𝑇

𝑑𝜏
= −1.4550𝐶/𝑠𝑒𝑐;  

𝑑𝑇

𝑑𝜏
= −1.455 ∗ 60 𝐶/𝑚𝑖𝑛  

𝑑𝑇

𝑑𝜏
= −87.32𝑜𝐶/𝑚𝑖𝑛 

 

 

3. A steel ball bearings (K=50W/mK,  α=1.3 x10-5m2/sec.), 40mm in diameter are heated to a 

temperature of 650oC. It is then quenched in a oil bath at 50oC, where the heat transfer coefficient is 

estimated to be 300W/m2K. Calculate 

i) Time required for bearing to reach 200oC 

ii) The total amount of heat removed from a bearing during this time and  

iii) The instantaneous heat transfer rate from the bearings , when they are first immersed in oil 

bath and whey reach 200oC (3b, 14, Dec13/Jan14) 

Hint  

i) Time required to reach 2000C 

Ball is sphere 

First find 𝐵𝑖 =
ℎ𝐿𝑐

𝐾
  𝐿𝑐 =

𝑅

3
 as explained earlier problem Bi=4.166𝑥10−3  
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4. A steel ball 5 cm diameter and initially at 900o C is placed in still air at 30 o C. Find i)temperature of 

the ball after 30 seconds ii) the rate of cooling in o C /min after 30secs 

Assume h=20 W/m2  oC , K (Steel)=40 W/moC,  𝜌(𝑆𝑡𝑒𝑒𝑙) =7800 kg/m3 Cp(Steel )=460 J/kg (3c, 08 

June/July17) 

 

5. A hot mild steel Sphere( K=43 W/mK) having 10 mm diameter is planned to be cooled by an air flow 

at 25 oC. The Convection heat transfer coefficient is 115 W/m2K. Calculate the following i) time 

required to cool the sphere from 600 oC to 100 oC.ii) Instantaneous heat transfer rate 1.5 minute 

after the start of Cooling iii) Total energy transferred from the sphere during the first 1.5 min     ( 3c, 

8 June/July 16) 

6. A 15 mm diameter mild steel Sphere( K =42 W/mK) is exposed to cooling air flow at 20oC resulting in 

the heat transfer Coefficient h= 120 W/m2K. Determine the following i) time required to cool the 

sphere from 550oC to 290 oC  ii)Instantaneous heat transfer rate for 2 minutes after starts of cooling 

iii)Total energy transferred from the sphere during the first 2 minutes. Take for mild steel 𝜌 =7850 

kg/m3 ,C= 475J/ kgK  𝛼 =0.045 m2/hr (4b, 08Dec18/Jan19 15me,3b,10 Dec15/16) 

 

7. An aluminium sphere weighing 6 kg and initially at temperature of 350 oC is immersed in a fluid 

at 30 oC with convection coefficient of 60 W/m2K. Estimate the time required to cool the sphere 

to 100oC take the thermo physical properties as C= 900 J/ KgK  𝜌 =2700 kg/m3 K=205 W/mK 

(3c,08 Dec18/Jan19) 

 

Hint : 𝒎 = 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 ∗ 𝑽𝒐𝒍𝒖𝒎𝒆 = 𝝆 ∗
𝟒 

𝟑
𝝅𝑹𝟑 

𝟔 = 𝟐𝟕𝟎𝟎 ∗
𝟒 

𝟑
𝝅𝑹𝟑 ; 𝑹 = √

𝟔∗𝟑

𝟐𝟕𝟎𝟎∗𝟒∗𝝅

𝟑
 ;  𝑹 = 𝟎.𝟎𝟖𝟏𝒎 

8. An  Aluminum sphere weighing 6 kg and initially at a temperature of 420 oC is suddenly 

immersed in a fluid at 18oC. The convective heat transfer coefficient is 45 W/m2K. Estimate the 

time required to cool the sphere to 120 oC. Also find the total heat flow from the sphere to the 

surrounding when it cools from 300 oC to 120oC (For aluminum 𝜌 = 2700 kg/m3 C=900 J/kgK ,K= 

200 W/mK) (3b,10 Dec2016/Jan17)  

 

Hint : 𝒎 = 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 ∗ 𝑽𝒐𝒍𝒖𝒎𝒆 = 𝝆 ∗
𝟒 

𝟑
𝝅𝑹𝟑 

𝟔 = 𝟐𝟕𝟎𝟎 ∗
𝟒 

𝟑
𝝅𝑹𝟑 ; 𝑹 = √

𝟔∗𝟑

𝟐𝟕𝟎𝟎∗𝟒∗𝝅

𝟑
 ;  𝑹 = 𝟎.𝟎𝟖𝟏𝒎 

 

9. The temperature of a gas stream is measured with a thermocouple. The junction may be 

approximated as a sphere of diameter 1mm K=25W/moC, 𝜌 =8400 kg /m3 , Cp=0.4kJ/ kg K, h= 

560W/m2K.  How long will it take for the thermocouple to record 99% of the applied 

difference?. (3c, 08, June/July14) 

Hint:  
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Thermocouple approximated as sphere  

thermocouple to record 99% of the applied difference 

ie 𝑇 − 𝑇∞ = (1 − 0.99)(𝑇0 − 𝑇∞);  

𝑇 − 𝑇∞
𝑇0 − 𝑇∞

=
(1 − 0.99)(𝑇0 − 𝑇∞)

(𝑇0 − 𝑇∞)
 

𝐻𝑒𝑛𝑐𝑒 
𝑇 − 𝑇∞
𝑇0 − 𝑇∞

= 0.01 

Then use  

𝑇 − 𝑇∞
𝑇0 − 𝑇∞

= 𝑒𝑥𝑝 {
−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} 

And proceed  

10. A Thermocouple is used to measure the temperature in a gas stream. The junction is 

approximated as a sphere with thermal conductivity of 25 W/mK. The properties of the 

junctions are 𝜌 =9000 kg /m3 C=0.35 kJ/ kg K, h =250 W/m2K. Calculate the diameter of the 

junction if Thermocouple measures 95% of the applied temperature difference in 3 seconds ( 

3b,04 June/July 2018) 

 

Thermocouple approximated as sphere  

thermocouple to record 99% of the applied difference 

ie 𝑇 − 𝑇∞ = (1 − 0.95)(𝑇0 − 𝑇∞);  

𝑇 − 𝑇∞
𝑇0 − 𝑇∞

=
(1 − 0.95)(𝑇0 − 𝑇∞)

(𝑇0 − 𝑇∞)
 

𝐻𝑒𝑛𝑐𝑒 
𝑇 − 𝑇∞
𝑇0 − 𝑇∞

= 0.05 

Then use  
𝑇−𝑇∞

𝑇0−𝑇∞
= 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
};  0.05 = 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
} 

 

And proceed  

11. The average heat transfer coefficient for flow of 100oC air over a flat plate is measured by  the 

temperature time history of a 3 cm thick copper slab exposed to 100 oC air, in one test run,  the 

initial temperature of slab was 210oC and in 5 minute the temperature is decreased by 40 oC. 

Calculate the heat transfer coefficient for this case. Assume 𝜌 =9000 kg/m3C=0.38 kJ/ kg K,  K= 

370 W/mK  (4c,06 June/July2018) 

𝑇∞ = 100
0𝐶; Thickness of slab 2L = 3𝑐𝑚 = 0.03𝑚  

the temperature is decreased by 40 oC ie 𝑇𝑜 − 𝑇 = 40
𝑜𝐶  

Hence 𝑇 = 𝑇𝑜 − 40 = 210 − 40 = 170𝐶 
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 𝐵𝑖 =
ℎ𝐿𝑐

𝐾
 ;   Here h is not given Hence assume 𝐵𝑖 < 0.1 𝐿𝑢𝑚𝑝𝑒𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

𝐿𝑐 =
𝑉

𝐴𝐻𝑇
 ; where V= surface area x thickness = 𝐴 ∗ 2𝐿  ;  

𝐴𝐻𝑇 = 2𝐴 since both area are expsed to Heat transfer  

𝐻𝑒𝑛𝑐𝑒 𝐿𝑐 =
𝑉

𝐴𝐻𝑇
=
𝐴∗2𝐿

2𝐴
 ;  𝐿𝑐 = 𝐿 =

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
=
0.03

2
= 0.015 

𝑇−𝑇∞

𝑇0−𝑇∞
= 𝑒𝑥𝑝 {

−ℎ𝐴𝑠𝜏

𝜌𝐶𝑉
};   

170−100

210−100
= 𝑒𝑥𝑝 {

−ℎ∗5∗60

9000∗380∗0.015
};   

70

110
= 𝑒−5.85∗10

−3ℎ 

𝑙𝑛
70

110
= −5.85 ∗ 10−3ℎ;   −0.4520 = −ℎ ∗ 5.85 ∗ 10−3; ℎ = 77.26

𝑊

𝑚2𝐶
 

 𝐵𝑖 =
ℎ𝐿𝑐

𝐾
;  𝐵𝑖 =

77.26∗0.015

370
 ; 𝐵𝑖 = 3.13 ∗ 10

−3 ; 𝐵𝑖 < 0.1 Hence lumped is to be applied  

𝐻𝑒𝑛𝑐𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

 

 

12  A household electric iron (𝜌 =2700 kg /m3 , Cp= 0.896 kJ/kgK and K=200 W/mo C) and weighs 1.5 kg 

.The total area of iron is 0.06m2 and it is heated with 500 W heating element. Initially the iron is at 

25o C (ambient temperature) . How long it takes for the iron to reach 100o C and  take ha =15 W/m2 o 

C         (3c,06M June/July13) 

13.  What are Heisler charts? Explain their significance in solving transient convection problems (3b, 06, 

June/July14) 

 

14. A long cylindrical shaft 20cm in diameter is made of steel K= 14.9 W/mK  𝜌 =7900 kg/m3 , C=477 

J/kgK and 𝛼 =3.95 X 10- 6 m/s. It comes out an oven at a uniform temperature of 600oC .The shaft is 

then allowed to cool slowly in an environment at 200 oC with an average heat transfer coefficient of  

80 W/m2K . Calculate the temperature at the centre of the shaft , 45 min after the start of cooling 

process. Also calculate heat transfer per unit length of the shaft during this period (3c,08 

Dec17/Jan18 

𝐵𝑖 =
ℎ𝐿𝑐

𝐾
; 𝐿𝑐 =

𝑉

𝐴
 where V is the Volume , A = Area of Heat Transfer  

𝐹𝑜𝑟 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 , 𝑉 = 𝜋𝑅2𝐿; 𝐴 = 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟  𝐴𝑟𝑒𝑎 = 2 𝜋𝑅𝐿;  Hence 𝐿𝑐 =
4 

3
𝜋𝑅3

 2 𝜋𝑅𝐿
=
𝑅

2
; 

𝑅 =
𝐷

2
;                                  𝑅 =

0.2

2
;      𝑅 == 0.1𝑚  

𝐿𝑐 =
𝑅

2
=
0.1

2
; 𝐿𝑐 = 0.05 



Dr Abdul Sharief PACE Page 45 
 

𝐵𝑖 =
80∗0.05

14.9
= 0.268; 𝐵𝑖 > 0.1 Hence we cannot apply Lumped Analysis  

𝐻𝑒𝑛𝑐𝑒 𝐻𝑖𝑒𝑠𝑙𝑒𝑟 𝐶ℎ𝑎𝑟𝑡 𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑢𝑠𝑒𝑑  

For Hiesler Charts  2 parameter required to centre temperature  

𝑖) 
𝛼𝜏

𝑅2
         ii) 

ℎ𝑅

𝐾
 

𝛼𝜏

𝑅2
=
3.95∗10−6∗45∗60

0.12
;   
𝛼𝜏

𝑅2
= 1.0665 

ℎ𝑅

𝐾
=
80∗0.1

14.9
;                   

ℎ𝑅

𝐾
= 0.5369 

𝐹𝑟𝑜𝑚 𝐹𝑖𝑟𝑠𝑡 𝑐ℎ𝑎𝑟𝑡 𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑖𝑒 𝐶ℎ 𝑎𝑟𝑡 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑒 𝑡𝑒𝑚𝑝𝑒𝑎𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  

For the values ;   
𝛼𝜏

𝑅2
= 1.0665; 

ℎ𝑅

𝐾
= 0.5369  

In Hiesler Chart       
𝑇𝑜−𝑇∞

𝑇𝑖−𝑇∞
= 0.44;     Here 𝑇𝑜 = 𝑐𝑒𝑛𝑡𝑟𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ;  𝑇𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  

𝑇𝑜−200

600−200
= 0.44;    𝑇𝑜 = 376

𝑜𝐶 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 45 𝑚𝑖𝑛 

Third chart of Hiesler for cylinder is to be used  

𝐵𝑖
2𝐹𝑛 = 0.5369

2 ∗ 1.0665; 𝑩𝒊 =
𝒉𝑹

𝑲
= 𝟎. 𝟓𝟑𝟔𝟖 

 

𝑄

𝑄0
= 0.78 where Q is the rate of Heat transfer and 𝑄0 is the maximum ossible Heat Transfer  

𝑄 = 0.78𝑄0 

𝑄0 = 𝑚𝐶𝑝(𝑇𝑖 − 𝑇∞);  

𝑄0 = 𝜌𝑉𝐶𝑝(𝑇𝑖 − 𝑇∞)  

𝑉 𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  is 𝜋𝑅2𝐿;  𝑉 = 𝜋 ∗ 0.12 ∗ 1  =0.03141 

𝑄0 = 𝜌𝑉𝐶𝑝(𝑇𝑖 − 𝑇∞);  𝑄0 = 0.78 ∗ 7900 ∗ 477*(600 − 200) = 47.35 ∗ 106𝑤𝑎𝑡𝑡𝑠 

 

𝑄 = 0.78𝑄0; 𝑄 = 0.78 ∗ 47.35 ∗ 106 = 36.93 ∗ 106 Watts  

Please note that to refer Hiesler chart  For cylinder and Sphere 𝑩𝒊 =
𝒉𝑹

𝑲
 and Not 

𝒉𝑳𝒄

𝑲
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Add the question : Find the temperature at the depth of thf 5 cm from the surface  

To find the temperature at any radius refer  second chart for cylinder  

Parameter required  
𝑟

𝑅
 and 𝑩𝒊 =

𝒉𝑹

𝑲
 

𝑟 = 𝑅 − 𝑑𝑒𝑝𝑡ℎ; 𝑟 = 0.1 − 0.05;   𝑟 = 0.1 − 0.05 = 0.05; 
𝑟

𝑅
=
0.05

0.2
;   
𝑟

𝑅
= 0.5 

For 
𝑟

𝑅
= 0.5 𝑎𝑛𝑑 𝑩𝒊 =

𝒉𝑹

𝑲
=  𝟎. 𝟓𝟑𝟔𝟖 

𝑇−𝑇∞

𝑇𝑖−𝑇∞
= 0.85;        

𝑇−200

600−200
= 0.85; 𝑇 = 363.2𝑜𝐶 

If Surface temperature is to be determined  

𝑟

𝑅
=
𝑅

𝑅
= 1; 

𝐹𝑜𝑟 
𝑟

𝑅
= 1; 𝑎𝑛𝑑 𝑩𝒊 =

𝒉𝑹

𝑲
 from 2nd chart 

𝑇−𝑇∞

𝑇𝑖−𝑇∞
 

𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑇 

 

 

 

15. Aluminum rod of 5 cm diameter and 1meter long at 200oC is suddenly exposed to a convective 

environment 70oC . Calculate the temperature of a radius of 1cm and heat lost per meter length of 

the rod 1 minute after the cylinder exposed to the environment – properties of Al 𝜌 =2700 kg /m3 

Cp=900J/ kg K, h= 500W/m2K,  α=8.5x10-5m2/s (3c, 10, Dec14/Jan15) 

16. An aluminium,  wire 1 mm in diameter at 200o C is suddenly exposed to an environment at 30 o C 

with h= 85.5 W/m2K. Estimate the time required to cool the wire to 90o C. If the same wire to place 

in a stream at (h= 11. 65 W/m2K ),what would be time required to reach it to 90 o C. Assume thermo-

physical properties C =900 J/kgK, 𝜌 =2700 kg /m3  K=204 W/mK (3b,09 Dec17/jan18) 

17. A long 15 cm diameter cylindrical shaft made of SS 314 (K= 14.9 W/mK, 𝜌 =7900 kg/m3)  allowed to 

cool slowly in a Chamber of 150oC with an average heat transfer coefficient of 85  W/m2K 

.Determine the temperature of the centre of the shaft 25 minutes after the start of cooling process 

ii) Surface temperature at that time iii) heat transfer per unit length of shaft during this time period 

(3c, 10 June/July2015) 

ii) For surface temperature  
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𝑟

𝑅
=
𝑅

𝑅
= 1; 

𝐹𝑜𝑟 
𝑟

𝑅
= 1; 𝑎𝑛𝑑 𝑩𝒊 =

𝒉𝑹

𝑲
 from 2nd chart note the value of  

𝑇−𝑇∞

𝑇𝑖−𝑇∞
 

𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 𝑇 after substituting 𝑇𝑖𝑎𝑛𝑑 𝑇∞  

𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

18. Water pipes are to be buried underground in a wet soil (𝛼 =2.78x10-5 m2/hr) which is initially at 

4.5oC. The soil surface temperature suddenly drops to -5oC and remains at this value for 10hrs. 

Calculate the minimum depth at which the pipes are laid if the surrounding soil temperature is to be 

maintained above 0oC. The soil may be considered as semi-infinite solid. Treat the present 

conditions as the condition as the condition of an semi infinite solid. (3c,06,  June/July2018) 

 



Ф2 = Φ1

(a) Specular Radiation (b) Diffuse Radiation

Source

Φ1
Φ2

Source

MODULE 3
RADIATION

VTU theory Questions

1. Define i) black body ii) Plank’s law iii) Wien displacement law iv) Lambert’s
cosine law, v) Kirchoffffs law  

2.  Explain the following terms i)  black body and grey body ii) Radiosity and
irradiation 

3.  Explain i)  Stefan – Boltzman Law ii)  Wien displacement law iii)  Radiation
shield iv) Radiosity v) Black body 

4.  State and explain kirchoffs law.
5.  State and Prove Kirchoffs law of radiation 
6.  State and prove wien's displacement law of radiation 
7.  Explain briefly the concept of black body 
8.  Prove that emissive power of a black body in a hemispherical enclosure is

π  times intensity of radiation

9. For  a black body show that  intensity of  radiation is
1
π

 times Emissive

power 
10. Derive  an  expression  for  a  radiation  shape factor  and  show that  it  is  a

function of geometry only 

Specular Radiation and Diffuse Radiation:

 Specular and Diffuse Radiation

When  radiation  strikes  a  surface,  two  types  of  reflection  phenomena  may  be
observed. If the angle of incidence is equal to the angle of reflection, the radiation is
called Specular. On the other hand, when an incident beam is distributed uniformly
in all directions after reflection, the radiation is called  Diffuse Radiation. The two
types of  radiation are  depicted in Fig.  10.3.  Ordinarily,  no real  surface is  either
specular or diffuse. An ordinary mirror is specular for visible light, but would not



necessarily be specular over the entire wavelength range. A rough surface exhibits
diffuse behaviour better than a highly polished surface. Similarly, a highly polished
surface is more specular than a rough surface.

Emissive Power: E (W/m2)

The emissive power of a surface is the total energy emitted by a surface at a given
temperature per unit time per unit area for the entire wavelength range, from λ = 0
to λ = ∞.

Monochromatic Emissive Power: Eλ (W/m2/unit wavelength)
The emissive power of a surface is the energy emitted by a surface at a given 
temperature per unit time per unit area per unit wavelength at given wavelength
Total Emissive Power E can be calculated by integrating Monochromatic Emissive 
Power from λ = 0 to λ = ∞.

∞ 
 E = ∫Eλdλ
      0

Emissivity ε
The emissivity of a surface is the ratio of the emissive power of the surface to the
emissive power of a black surface at the same temperature. It is denoted by the
symbol ε.

Monochromatic Emissivity

The  Monochromatic  emissivity  of  a  surface  is  the  ratio  of  the  Monochromatic
emissive power of  the surface to the Monochromatic  emissive power of  a  black
surface at the same temperature and at same vave length . It is denoted by the
symbol ελ

Solid Angle (Steridians) 

It is defined as ratio of spherical surface enclosed by a cone ,with its vertex at the
centre of the sphere , to the square of radius of the sphere. Unit of Solid Angle is
steredians 

Intensity of radiation

It is defined as the total energy emitted by a surface at a given temperature per
unit time per unit area per unit solid angle W/m2/steredian

Black Body
A body which absorbs all incident radiation falling on it is called a 
blackbody. For a blackbody, α = 1, ρ = τ = 0. For a given temperature and 
wavelength, Emissive Power of black body at given temperature and wavelength is



greater than any other body. It is hypothetical body. It is a standard with which the 
radiation characteristics of other media are compared

Gray Body:
A gray body is a body having the same value of monochromatic emissivity      at all

wavelengths. i.e.

    ε = ελ, for a gray body
Radiosity of a  Surface (J):
This is defined as the total energy leaving a surface per unit time per unit area of
the surface. This definition includes the energy reflected by the surface due to some
radiation falling on it.

Irradiation of a surface(G):
This is defined as the radiant energy falling on a surface per unit time, per unit area
of the surface.

Therefore if E is the emissive power, J is the radiosity, ε is the irradiation and ρ the
reflectivity of a surface, then, 

J = E + rG

For an opaque surface, ρ + α = 1 or r = (1 – α)

J = E + (1-α)G  

STEFAN – BOLTZMANN LAW

This law states that the emissive power of a blackbody is directly proportional to the
fourth power of the absolute temperature of the body.

i.e., Eb α  T4

Or Eb = σT4 ---------------------------------- (10.5)

where σ is called the Stefan – Boltzmann constant. 

In SI units σ = 5.669x10-8 W/(m2-K4).

PLANCK’S LAW:

This law states that the monochromatic power of a blackbody is given by

Ebλ =
C1

λ5(e
C2

λT−1)



where C1 and C2 are constants whose values are found from experimental data; 

C1 = 3.7415 x 10-16 Wm2 and C2 = 1.4388 x 10-2 m-K. λ is the wavelength and T is
the absolute temperature in K.

10.2.3   WEIN’S DISPLACEMENT LAW:

It can be seen from Planc law  that at a given temperature, Ebλ depends only
on λ. Therefore the value of λ which gives maximum value of Ebλ can be obtained by
differentiating Plancs law  w.r.t λ and equating it to zero. 

Planc law Ebλ =
C 1

λ5(e
C2

λT −1)

d (
C 1

λ5(e
C2

λT−1))
dλ

 ¿0

      λmT = 0.002898 m-K

λm is wavelength for Maximum emissive power at given temperature

From the Wein Displacement law,  it can be seen that the wavelength at which the 
monochromatic emissive power is a maximum decreases with increasing 
temperature.

Proof:

Planc law Ebλ =
C1

λ5(e
C2

λT−1)

d (
C1

λ5(e
C2

λT−1))
dλ

 ¿0

d (λ5(e
C2

λT−1))
dλ

 =0



Sample

Black Enclosure

qi.A1.α1

EA1

Let  C2/λT = y . Then Eq. (10.6) reduces to

d ( λ5 (e y
−1 ))

dλ
 =0

λ5( ye y dy
dλ )+5 λ5 (e y

−1 )=0

Where dy
dλ

=

d ( C2

λT )
dλ

Solution for above equation is   ey(5 – y) = 5

By trial and error , y = 4.965

C2/λmT = 4.965

  λmT = C2/4.965 = 1.4388x10-2 /4.965

 λmT = 0.002898 m-K

Lamberts Cosine Law

It states that A diffuse surface radiates wnergy in such a manner that the rate of 
energy radiated in any particular direction is proportional to the cosine of the angle 
between the direction under any consideration and normal to the surface. 

Eθ=En cosθ

KIRCHOFF’S LAW:

This law states that at any temperature the ratio of total emissive power to
absorptivity is  constant for all  substances which are in thermal  equilibrium with
their surroundings.

Proof: Consider a perfect black enclosure i.e. the one which absorbs all the incident
radiation falling on it (see Fig 10.5). Now let the radiant flux from this enclosure per
unit area arriving at some area be qi W/m2



Model used for deriving Kirchoff law

Consider a body is  placed inside the enclosure and allowed to come to thermal
equilibrium with it. At equilibrium, the energy absorbed by the body must be equal
to the energy emitted;

E is Emissive Power , qi  is radiation heat flux in W/m2 falling on the body, 

 At thermal equilibrium we may write

E1 A1 = qi A1 α1

E1 = qi α1 …………………………………. 1

If the body in the enclosure with a another  body 2 and allow it to come to thermal
equilibrium with the 

E2 A2 = α 2 qi A2

E2 = α 2 qi.......………………………………2

If 1 is divided by 2 we get

E1

E2

=
α 1

α 2

Hence

E1

α 1

=
E2

α 2

Hence

E1

α 1

=
E2

α 2

=
E3

α3

=
E4

α4

=-----------=
Eb

α b

Hence ratio  of  Emissive power to absoptivity  is  constant for all  bodies at  given
temperature

E1

α 1

=
Eb

α b



O

P

dA1

dAn

φ

θ

dφ

OP = R

But α b=1

Hence 

E1

α 1

=Eb  ;   
E1

Eb

=¿  α 1

ε1=α1

Kirchoff’s law and is valid only when the body is in thermal equilibrium with the
surroundings. However, while analyzing radiation problems in practice we assume
that Kirchoff’s law holds good even if the body is not in thermal equilibrium with the
surroundings, as the error involved is not very significant.

Prove  that  Emissive  Power  of  black  body  is    π   times  the  Intensity  of
radiation

Consider an elemental area dA1 whose total emissive power is E1. This total radiant
energy emitted by dA1 can be intercepted by a hemisphere as shown in Fig 10.10.

    

Fig Radiation
from a differential

area dA1 into

surrounding hemisphere  centered at dA1.

Intensity of radiation , I  =

dQ1−2

dA1Cosθx
d A2

R2

dQ1−2=dA1Cosθx
d A2

R2

d A2=¿  x y where x = Rdθ ; y = rdφ  But r= R sinθ  hence y = R sinθ  dφ  



T1, α1= ε1, A1

T2, α2 = ε2, A2

T3, ε13, A3 = A1

T3, ε23, A3 = A1

Hence A2=(Rdθ ) (R sinθ d∅ )  ;   d A2=R2 sinθ dθd ∅

dQ1−2=I bdA1Cosθx
R2 sinθdθ d∅

R2

dQ1−2=I bdA1CosθSinθ dθd∅

dQ1−2=I bdA1
sin 2θ

2
dθd∅

Q1−2=I bdA1 ∫
θ=0

θ=
π
2
sin 2θ

2
dθ ∫

∅=0

∅=2π

d ∅

Q1−2=I bdA12π ∫
θ=0

θ=π
2
sin 2θ

2
dθ

Q1−2=I bdA1π ( – cos2θ
2 )

θ=0

θ=π
2

Q1−2=−I bdA1
π
2

(−1−1 )

Q1−2=EbdA1π

But Q1−2=EbdA1

EbdA1=I bdA1π

Eb=π I b

View Factor or shape factor

For any two surfaces, the orientation of them with respect to each other affects the
fraction of the radiation energy leaving one surface and striking the other directly.
The  concept  of  “VIEW  FACTOR”  (also  called  as  CONFIGURATION  FACTOR/SHAPE
FACTOR) has been utilised to formalise the effects of orientation in the radiation
heat exchange between surfaces. 

PLANE  RADIATION  SHIELDS: It  is  possible  to  reduce  the  net  radiation  heat
exchange
between  two

infinite parallel  gray
surfaces  by
introducing  a



third surface in between them. If the third surface, known as the radiation shield is
assumed to be very thin, then both sides of this surface can be assumed to be at
the same temperature.

Radiation Heat Exchange Between Two Parallel Infinite Graysurfaces in 
presence of a radiation shield

Fig.shows a scheme for radiation heat exchange between two parallel infinite 
gray surfaces at two different temperatures T1 and T2 in presence of a radiation 
shield at a uniform temperature, T3.

Q1−3

A1

=
σ (T 1

4
−T 3

4 )
1
∈1

+
1
∈13

−1

Q3−1

A1

=
σ (T3

4
−T 2

4 )
1
∈32

+
1
∈2

−1

For steady state conditions, these two must be equal..Therefore we have

Q1−3

A1

=
Q3−1

A1

A1σ (T1
4
−T 3

4 )
1
∈1

+
1
∈13

−1
=

A13 σ (T 3
4
−T2

4 )
1
∈32

+
1
∈2

−1

(T 1
4
−T3

4 )=
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+
1
∈13

−1

1
∈32

+
1
∈2

−1
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+
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Heat transfer with shield Q=Q13=Q32

Q
A1

=
Q1−3

A1

=
A1σ (T1

4
−T 3

4 )
1
∈1

+
1
∈13

−1

Q
A1

=
Q1−3

A1

=

A1σ (T1
4−

T1
4
+

1
∈1

+
1
∈13

−1

1
∈32

+
1
∈2

−1
T 2

4

1+

1
∈1

+
1
∈13

−1

1
∈32

+
1
∈2

−1
)

1
∈1

+
1
∈13

−1

Special Case  :   If ∈1=∈2=∈13=∈32

T3=(T 1
4
+T 2

4

1+1 )
1
4

T3=(T 1
4
+T 2

4

2 )
1
4



Heat transfer 

Qwithshield

A1

=
Q1−3

A1

=

σ (T1
4
−
T1

4
+T2

4

2 )
1
∈

+
1
∈

−1

Q
A1

=

σ (T 1
4
−T 2

4

2 )
2
∈

−1

Heat transfer with one shield

Q
A1

=
σ (T1

4
−T 2

4 )

2( 2
∈

−1)
Heat Transfer with out shield 

Q
A1

=
σ (T1

4
−T 2

4 )
1
∈

+
1
∈

−1

Q
A1

=
σ (T1

4
−T 2

4 )
2
∈

−1

It  can be seen from the above equation that  when the emissivities  of  all
surfaces are equal, the net radiation heat exchange between the surfaces in the
presence of single radiation shield is 50% of the radiation heat exchange between
the same two surfaces without the presence of a radiation shield. This statement
can be generalised  for N radiation shields as follows:

Heat transfer with n shield

Q
A1

=
σ (T 1

4
−T2

4 )

(n+1 )( 2
∈

−1)



1. The temperature of a black surface is 0.2 m2 in area is 540 oC. Calculate i) the
total  rate  of  energy  emission  ii)   intensity  of  normal  radiation  iii)   the
wavelength of maximum monochromatic emissive power 

              Black surface ie  ε=1;      Area =0.2 m2  ie A=0.2m2 ; Temperature = 540oC
ie T=540+273 K = 813K

i) Q=?                                   ii) I=?                          iii) λmax=?

i¿ Eb=σ T 4  ;   Eb=5.67 x 10−8 x8134  ; Eb=2.4771 x104W /m2

Q=A Eb;Q=0.2x 2.4771 x104 ;Q=4954.22Watts

ii¿    Eb=πI b  ;    2.4771 x 104
=π I b  ;             I b=

2.4771 x104

π
;

I b=7884.5W /m2 solidAngle

iii  )     λmaxT=2898μmK ;          λmax x 813=2898    ;    λmax=
2898
813

μm ;

λmax=3,56 μm

2.  A pipe carrying steam runs in a large room and exposed to air at 30  oC. The
pipe surface temperature is 200 oC. Diameter  of the pipe is 20 cm. If the total
heat  loss  per  meter  length  of  the  pipe  is  1.9193  kW/m,  determine  the
emissivity to the pipe surface . 

ϕ=20 cm=0.2m ;T w=2000C=(200+273 ) K=473K ; 

 T ∞=300C=(30+273 ) K=303 K
Heat loss per meter length=1.9193kW /m=1919.3W /m  ;            length L=1 m

Heat loss¿ the pipeQ=∈σA (T w
4−T ∞

4 ) ;

Q=∈σA (T w
4
−T∞

4 );

1919.3=∈ x5.67 x10−8 x (πx 0.2x 1 ) x (4734
−3034 )

∈=1.294

                                                                          T w=2000C;         T ∞=300C

3.  In an isothermal enclosure at uniform temperature two small surfaces A and
B are placed. The irradiation to the surface by the enclosure is 6200 W/m2.
The absorption rates by the surfaces A and B are 5500 W/m2  and 620 W/m2 .
When steady state established, calculate the following i) what are the heat



fluxes to each surface? What are their temperatures?. ii) Absorptivity of both
surfaces iii)  Emissive  power of each surface  iv) Emissivity of each  surface  .

Black Enclosure

For A

qiA=6200W /m2;qaA=5500W /m2

qreflected=qiA−qaA ;   qreflected=6200−5500 ;   qreflected=700W /m2

For B

qiB=6200W /m2;qaB=620W /m2

qreflected=qiA−qaA ;   qreflected=6200−620 ;   qreflected=5580W /m2

i) What are the heat fluxes to each surface

Heat  flux  on  A  =  heat  incident  per  unit  area  ;     Hence  Heat  flux  on  A

qA=6200W /m2

Heat  flux  on  B  =  heat  incident  per  unit  area  ;     Hence  Heat  flux  on  B

qB=6200W /m2

What are their temperature
For A
Under thermal equilibrium with enclosure and surface A
Energy absorbed = Energy emitted 

qiA Aα A=EA A ;                                     qiA α A=EA ;     

qiA α A=∈A σ T A
4 ;                qiA∈A=∈A σ T A

4                   qiA=σ T A
4

6200=5.67 x 10−8 x T A
4 ;                  T A=575.07 K

620 6200

5500 620

A B



For B
Under thermal equilibrium with enclosure and surface B
Energy absorbed = Energy emitted 

qiB AαB=EB A ;                                     qiBαB=EB ;     

qiBαB=∈Bσ T B
4 ;                qiB∈B=∈Bσ T B

4                   qiB=σ T B
4

6200=5.67 x 10−8 x T B
4 ;                  T B=575.07 K

ii) Absorbity on both the surfaces

α A=
qaA

q i

;     α A=
5500
6200

 ;  α A=0.887

αB=
qaB

q i

;     αB=
620
6200

 ;  αB=0.1

iii) Emissive Power of each surface
For A 
qiA Aα A=EA A ;                                     qiA α A=EA ;

6200 x0.887=EA

EA=5500W /m2

For B 
qiB Aα A=EB A ;                                     qiB αB=EB ;       6200 x0.1=EB

EB=620W /m2

iv) Emissivity of each surface 
∈A=α A ;    ∈A=0.887

∈B=αB ;    ∈B=0.1

4.  Calculate the net heat radiated exchange per m2 for two large parallel plates
maintained at 800 oC and 300 oC.  The emissivities of two plates are 0.3 and
0.6 respectively 



5.  Calculate the net Radiant heat exchange per m2 area for two large parallel
planes at temperature of 427 oC and 27 oC respectively.Take ϵ  for hot and
cold planes to be 0.9 and 0.6 respectively. If a polished aluminum sheet is
placed between them, find the percentage reduction in heat transfer, given
ϵ  for shield =0.04 

6.  Two  large  plates  having  emissivities  of  0.3  and  0.6  maintained  at  a
temperature of 900 oC and 250 oC. A radiation shield having and emissivity of
0.05  on  both  sides  is  placed  between  the  two  plates.   Calculate  i)  heat
transfer  without   shield  ii)  Heat  transfer  with  the  shield  iii)   percentage
reduction in the heat transfer due to shield iv)  temperature of the shield  

Heat Transfer without shield A B

Q1=
σA (T 1

4
−T 2

4 )
1
ϵ1

+
1
ϵ2

−1

Q1=
5.67x 10−8 x1 (11734

−5234 )
1

0.3
+

1
0.6

−1

Q1=25.77 x103watts /m2

Heat Transferwith shield

Q2=
σA (T 1

4
−T2

4 )

( 1
ϵ1

+
1
ϵ13

−1)+( 1
ϵ32

+
1
ϵ2

−1)
ϵ13=ϵ32=0.05

Q2=
5.67 x 10−8 x1 (11734

−5234 )

( 1
0.3

+
1

0.05
−1)+( 1

0.05
+

1
0.05

−1)
                                               ϵ1=0.3

ϵ2=0.6

Q2=2397.27Watts/m2

Percentage reduction∈Heat Transfer due¿ shield             ϵ13=0.05

Q1−Q2

Q1

x100                      ie (1−Q2

Q1
) x100

(1− 2397.27

25.77 x103 )x100
=90.97%
Temperature of the shield

ϵ32=0.05



Q13=Q13

σA (T 1
4
−T3

4 )
1
ϵ1

+
1
ϵ13

−1
=
σA (T 3

4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

(T1
4
−T 3

4 )
1
ϵ1

+
1
ϵ13

−1
=

(T3
4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

ϵ1=0.3

ϵ2=0.6     

(11734
−T 3

4 )
1

0.3
+

1
0.05

−1
=

(T 3
4
−5234 )

1
0.05

+
1

0.6
−1

(11734
−T 3

4 )
22.33

=
(T 3

4
−5234 )
20.66

11734
−T 3

4
=

22.33
20.66

(T 3
4
−5234 )

11734
−T 3

4
=1.081 (T 3

4
−5234 )

11734
−T 3

4
=1.081T 3

4
−1.081 x5234

11734
+1.081 x 5234

=1.081T 3
4
+T 3

4

11734
+1.081 x 5234

=2.081T 3
4

T3=( 1173
4
+1.081 x 5234

2.081 )
1
4

T3=986.89K

7.  Two large planes with emissivity  of 0.6 at 900K and 300K.  A radiation shield
with one side polished and having emissivity  of 0.05, while the emissivity  of
other side is 0.4 is proposed to be used. Which  side of the shield should face
the hotter plate,  if the temperature of shield is to be kept minimum?  Justify
your answer 
Case 1: The face having lesser emissivity of radiation shield facing hotter

plate ie ϵ13=0.05

ϵ13=0.05



And ϵ32=0.4

Temperature of the shield ε32=0.4

ε2=0.6

Q13=Q13

σA (T 1
4
−T3

4 )
1
ϵ1

+
1
ϵ13

−1
=
σA (T 3

4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

(T1
4
−T 3

4 )
1
ϵ1

+
1
ϵ13

−1
=

(T3
4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

(9004
−T3

4 )
1

0.6
+

1
0.05

−1
=

(T3
4
−3004 )

1
0.4

+
1

0.6
−1

                                                                                        ε1=0.6

ε13=0.05

(9004
−T 3

4 )
20.67

=
(T 3

4
−3004 )
3.17

T3=554.10K

Case 2: The face having lesser emissivity of radiation shield facing colder

plate ie ϵ13=0.4

And ϵ32=0.05

Temperature of the shield
Q13=Q13

σA (T 1
4
−T3

4 )
1
ϵ1

+
1
ϵ13

−1
=
σA (T 3

4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

(T1
4
−T 3

4 )
1
ϵ1

+
1
ϵ13

−1
=

(T3
4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1

(9004
−T 3

4 )
1

0.6
+

1
0.4

−1
=

(T 3
4
−3004 )

1
0.05

+
1

0.6
−1

ε1=0.6 ε2=0.6

ε13=0.4=0.4

ε32=0.05



(9004
−T 3

4 )
3.17

=
(T 3

4
−3004 )
20.67

T3=868.83K

Hence face having lesser emissivity ie 0.05 should face higher temperature
plate to keep the temperature of radiation shield to be minimum

8.  Two parallel plates, each of 4m2  area are large compared to gap of 5mm
separating them. One plate has a temperature of 800K and surface emissivity
of 0.6, while the other has a temperature of 300K and a surface emissivity of
0.9. Find the net energy exchange by radiation between them. If a polished
metal sheet of surface emissivity 0.1 on both sides is now located centrally
between two plates, what will be its study state temperature ? How the heat
transfer  would  be  altered.  Neglect  the  Convection  and  its  effects  if  any.
Comment upon the significance of this exercise.
Hint since 4m2  large compared to gap shape factor between plate =1 Hence 
Heat Transfer without  shield as before But A=0.4m2

Q1=
σA (T 1

4
−T 2

4 )
1
ϵ1

+
1
ϵ2

−1

Heat transfer with shiled

Q2=
σA (T 1

4
−T2

4 )

( 1
ϵ1

+
1
ϵ13

−1)+( 1
ϵ32

+
1
ϵ2

−1)
Percentage reduction∈Heat Transfer due¿ shield

Q1−Q2

Q1

x100                      ie (1−Q2

Q1
) x100

Temperature of the shield
Q13=Q13

σA (T 1
4
−T3

4 )
1
ϵ1

+
1
ϵ13

−1
=
σA (T 3

4
−T 2

4 )
1
ϵ32

+
1
ϵ2

−1



9.  Calculate the net Radiant heat exchange per m2 area for two large parallel
plates at temperature of 427 oC and 27 oC respectively. Take ϵ  for hot and
cold planes to be 0.9 and 0.6 respectively. If a polished aluminum sheet is
placed between them, find the percentage reduction in heat transfer, given
ϵ  for shield =0.4 

10.Two large parallel  plates  with  emissivity  of   0.5  each   are  maintained  at
different  temperatures  and  are  exchanging  heat  only  by  radiation.  Two
equally large radiation Shield with surface emissivity  0.05 are introduced in
parallel to the plates . Find the percentage reduction in net radiative heat
transfer 

11. Liquid air boiling at – 153 oC is stored in a spherical container of diameter 320
mm the container is surrounded by concentric spherical shell diameter 360
mm in a room at 27 oC. The space between the two spheres is evacuated. The
surface of the sphere are flashed with aluminum ( ϵ=¿  0.3)  Taking the
latent  heat  of  vaporization  of  liquid  a  as  210  kJ/  kg,  find  the  rate  of
evaporation of liquid air 
                                                                                                     D2=360mm

Q=
σ (T 1

4
−T 2

4 )
1−ϵ1

A1ϵ1

+
1

A1F12

+
1−ϵ2

A2ϵ2

D2=360mm=0.36m  r2=0.18m

D1=320mm=0.32m  r1=0.16m

A1=4 π r1
2  ;   A1=4 π 0.162    ; A1=0.3216m2

A1=4 π r2
2  ;   A1=4 π 0.182    ; A2=m2                            D1=320mm

Q=
5.68 x 10−6 (1204

−3004 )
1−0.3

0.3216x 0.3
+

1
0.3216 x 1

+
1−0.3
x 0.3

Q=−27.88watts
Negative signindicates heat is transferred ¿outside¿ inside

Rate of evaporation of liquid oxygen
´

ḿ=
Q
hfg

ḿ=
27.88

210 x 103

ḿ=1.3276 x10−4 kg/ s

ϵ2=¿

ϵ2=¿

0.3



ḿ=0.4779 kg /hr

12. The concentric spheres 20cms and 30cms in diameter are used to liquid O2 (-
153oC) in a room at 300K. The space between the spheres is evacuated. The
surfaces of the spheres are highly polished as  ϵ=¿ 0.04. Find the rate of
air per hour 



Boundary Layer 

1. Define and explain hydrodynamic and thermal boundary layer in case of flow
over a flat plate   (06 4a June/July13, Dec18/Jan19)  

2.  Explain velocity  and thermal  boundary layer  06 June/July 14.Dec17/Jan18
,June/July 16, Dec18/Jan19

3. With reference to fluid flow over a flat plate , discuss the concept of velocity
boundary  and  thermal  boundary  layer  with  necessary  sketches  05
Dec13/Jan14

4.  For  flow over  flat  plate,   discuss  the concepts  of  velocity  boundary  and
thermal boundary layer with sketches. (04,5a,June/July2015)

5.  Explain  briefly  with  structures  i)  Boundary  layer  thickness  ii)  Thermal
boundary layer thickness 08 June/July 2017

6  Obtain  a  relationship  between  drag  coefficient  cm and  heat  transfer
Coefficient hm for the flow over a flat plate (06, 5c, Dec13/Jan 14)

7.  Prove that  
Nux

RexPr
=
C fx

2
with usual notations (08, 5b, Dec14/Jan15)

1. The exact expression for local Nusselt number for the laminar flow along a
surface is given by 

Nux=
hx x
k

=0.332R ex
1
2 Pr

1
3

Show that the average heat transfer coefficient from x= 0 to x =L over the
length L of the surface is given by 2hL is the local heat transfer coefficient at
x=L                                        

2. An approximate expression for temperature profile in thermal boundary layer
is given by

T ( x , y )−T w
T ∞−T w

 =
3
2

y
δt ( x )

−
1
2 [ y
δt (x ) ]

3

, where 
δ t ( x )=4.53

x

Rex
1
2 Pr

1
3

Develop an expression for local heat transfer coefficient h(x)

When a fluid flows over a body or inside a channel and if the temperatures of the 
fluid and the solid surface are different, heat transfer will take place between the 
solid surface and the fluid due to the macroscopic motion of the fluid relative to the 
surface. This mechanism of heat transfer is called as “convective heat transfer”.If 
the fluid motion is due to an external force (by using a pump or a compressor) the 
heat transfer is referred to as “forced convection”. If the fluid motion is due to a 
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Fig. 5.2: Velocity boundary layer for flow over a flat plate
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force generated in the fluid due to buoyancy effects resulting from density 
difference (density difference may be caused due to temperature difference in the 
fluid) then the mechanism of heat transfer is called as “natural or free convection

Velocity Boundary Layer:- Consider the flow of a fluid over a flat plate as shown 
in Fig. 

The fluid just before it approaches the leading edge of the plate has a velocity u∞ 

which is parallel to the plate surface.As the fluid moves in x-direction along the 
plate,

A fluid flows over the plate as shown in fig, there is a region surrounding the plate 
surface where the fluid velocity changes from zero at the surface to the velocity u∞ 
at the outer edge of the region. This region is called the velocity boundary layer. 
The locus of the point where the velocity of the fluid is 99% of the stream velocity is
called the boundary layer . In the region between the plate and boundary layer 
velocity varies from zero to 99% of stream velocity . and the region above the 
boundary layer the fluid have velocity equal to stream velocity. The variation of the 
x-component of velocity u(x,y) with respect to y  at a particular location along the 
plate is shown in Fig

The distance measured normal to the surface from the plate surface to the point at 
which the fluid attains 99% of u∞ is called “velocity boundary layer thickness” 
and denoted by δ(x)

Thus for  flow over a flat plate, the flow field can be divided into two distinct 
regions, namely, (i) the boundary layer region in which the axial component of 



velocity u(x,y) varies rapidly with y with the result the velocity gradient (∂u /∂y) and 
hence the shear stress are very large and (ii) the potential flow region which is 
outside the boundary layer region, where the velocity gradients and shear stresses 
are negligible.

Drag coefficient and Drag force:- If the velocity distribution u(x,y) in the 
boundary layer at any ‘x’ is known then the viscous shear stress at the wall can be 
determined using Newton’s law of viscosity. Thus if τw(x) is the wall-shear stress at 
any location x then
                                

                                                             τw(x) = μ( dudy ) y=0

where μ is the absolute viscosity of the fluid.The drag coefficient is dimensionless 
wall shear stress. 

The local drag coefficient, Cx at any ‘x’ is defined as

C fx=
τw ( x )

1
2
ρU∞

2

C fx=

μ( dudy )
y=0

1
2
ρU∞

2

                                                                         

C fx=

2ν ( dudy )
y=0

U∞
2

Therefore if the velocity profile u(x,y) at any x is known then the local drag 
coefficient Cx at that location can be determined from Eq. 5.6.The average value of 
Cx for a total length L of the plate can be determined from the equation  

Ć fL=
1
L

 ∫
0

L

C fxdx                                                                            L

                                                                                                                                     
0

Substituting for Cx from Eq. 5.5 we have



C fx=

2ν ( dudy )
y=0

U∞
2

Ć fL=

1
L
∫
0

L

τw (x )dx

1
2
ρU∞

2

Ć fL=
τw

1
2
ρU ∞

2

                                                                                L

                                                            

Where τw is the average wall-shear stress for total length L of the plate.

The total drag force experienced by the fluid due to the presence of the plate can 
be written as

                                                                  FD = As τw 

Where As is the total area of contact between the fluid and the plate. If ‘W’ is the 
width of the plate then As = LW if the flow is taking place on one side of the plate 
and As = 2LW if the flow is on both sides of the plate.

Thermal boundary layer:-

Consider that a fluid at a uniform temperature T∞ flows over a flat plate which is 
maintained at a uniform temperature Tw.Let T(x,y) is the temperature of the fluid at 
any location in the flow field.Let the dimensionless temperature of the fluid θ(x,y) 
be defined as

θ ( x , y )=
T ( x , y )−T w
T ∞−Tw

The fluid layer sticking to the plate surface will have the same temperature as the 
plate surface [T(x,y)y = 0 = Tw] and therefore  θ(x,y) = 0 at y = 0.Far away from the 
plate the fluid temperature is T∞ and hence  θ(x,y) → 1 as y → ∞. Therefore at each 
location x along the plate one can visualize a location y = δt(x) in the flow field at 
which  θ(x,y) = 0.99. δt(x) is called “the thermal boundary layer thickness” as 



shown in Fig. 5.3. The locus of such points at which θ(x,y) = 0.99 is called the edge 
of the thermal boundary layer. The relative thickness of the thermal boundary layer 
δt(x)

The relative thickness of the thermal boundary layer δt(x) and the velocity boundary
layer δ(x) depends on a dimensionless number called “Prandtl number” of the 
fluid.It is denoted by Pr The Prandtl number for fluids range from 0.01 for liquid 
metals to more than 100,000 for heavy oils. For fluids with Pr = 1   such as gases 
δt(x) = δ(x), for fluids with Pr << 1such as liquid metals δt(x) >> δ(x) and for fluids 
with Pr >> 1, like oils δt(x) << δ(x).

Average heat transfer Coefficient

Consider laminar flow along flat plate and Nusselt number is given by

N ux=0.332R ex
1
2 Pr

1
3

hx x

K
=0.332(U ∞ x

ϑ )
1
2 P r

1
3
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K
x
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1
2 x

1
2 Pr

1
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Average  Heat transfer coefficient

hm=
1
L
∫
0

L

hx dx
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Ń uL=0.664 R eL
1
2 Pr

1
3

Ń uL=2∗0.332 ReL
1
2 Pr

1
3

Ń uL=2N uL

Hence Average Nusselt Number is equal to twice the local Nusselts Number at
x=L

Reynolds Analogy Or  (C x

2
=S txP r

2
3 ) C x

2
=Stx Pr

2
3

Exact expression for local drag coefficient and local Nusselt number for laminar flow
over plate



C x

2
=0.332 Rex

−1
2    ---------1

N ux=0.332R ex
1
2 Pr

1
3  -------------2

By the definition of local Stanton Number S tx=
hx

ρC pU ∞

S tx=
hx
x
K

ρC pU ∞
x
K
μ
μ

S tx=
hx
x
K

μCp

K

ρU∞ x

μ

S tx=
N ux

Pr R ex
 ------------3  

Substituting  2 in3

S tx=
0.332 Rex

1
2 Pr

1
3

Pr R ex

S tx=
0.332 Rex

−1
2

P r

2
3

 --------------4

Substituting 1 in 4

S tx=

C x

2

Pr

2
3

C x

2
=Stx Pr

2
3

This expression is referred to as Reynolds Analogy which relates local drag 
coefficient and local Stanton number 

In case of average values 



Cm

2
=StmP r

2
3  , where Cm  and S tm are the mean drag coefficient and mean 

Stanton Number respectively

Forced Convection VTU Questions 

1. Using dimensional analysis obtain a relation between Nu, Re and  Pr for forced
Convection heat transfer  (5a, 10 June/July 2013)

2.  Obtain an empirical expression in terms of dimensionless numbers for heat
transfer coefficient in  the case of  forced convection heat  transfer.  (08,5a,
June/July 2017)(Dec18/jan19)

3.  Using dimensional analysis obtain a relation between Nu, Re and  Pr for forced
Convection heat transfer  (5a, 10 June/July 2013)

4.  Obtain an empirical expression in terms of dimensionless numbers for heat
transfer coefficient in  the case of  forced convection heat  transfer.  (08,5a,
June/July 2017)(Dec18/jan19)

5. Using Bulkingham’s π−¿  theorem obtain the relationship between various

dimensionless numbers (Nu=∅ (P r ) (Gr ))  for free convection heat transfer  8

Dec15/jan16, , June/July14,June/July 2018, June/July16

6.  Using dimensional analysis show that for free convection heat transfer Nu=B

GraPrb  with usual notations 10 Dec16/Jan17

7.  Explain  the  significance  of  Grashoff  number   02  June/July  2017,
Dec2018/Jan19

8.  Explain  the  significance  of  following  non-dimensional  numbers  i)  Prandtl
number ii) Grashoff number iii)Nasselt  number iv) Stanton number v) Pecelt
number  06 June/July 2015 , Dec14/Jan15, June/July 2018, June/July 2017

9.  Explain the physical significance of the following dimensionless numbers
i)Reynolds number ii) Prandtl number iii)Nusselt number iv)  Stanton number
(06, 8a, 15 scheme, June/July 18)(Dec15/Jan16) (june/July16) 

  Define stanton number and explain its physical significance (04, 5a, Dec14/Jan15

relation between Nu, Re and  Pr for forced Convection heat transfer  

Heat transfer coefficient, h , depends on ρ ,LV ,μ ,C p ,K

h=f (ρ , LV , μ ,C p ,K )

f (h , ρ , LV , μ ,C p ,K )=0

No of variables n =7



No of fundamental dimension , m=4   ie M , L ,T , θ

Hence number of π  terms ¿n−m  

Hence number of π  terms ¿7−4  =3

Choose 3 repetitive variables ρ ,L ,V   (fluid property, Geometry, dynamic)

π 1=ρ
a1 Lb1μc 1Kd 1  h

π 2=ρ
a2 Lb2μc 2  K d2V

π 3=ρ
a3 Lb3μc3  K d3Cp

ρ=
kg

m3  ¿
M

L3
=M L−3

;   L=L ;  V=
m
sec

=
L
T

=LT−1; μ=
N−sec

m2  ¿
MLT−2T
L2

¿M L−1T−1 ; 

 h=
W
m2K

=
Nm

secm2 K
=
MLT−2L
T L2θ

=M T−2θ−1 ; Cp=
J

kg−K
=
Nm
kgK

=
MLT−2L
Mθ

=L2T−2θ−1 ;

K=
W
mK

=
Nm

secmK
=
MLT−2 L
T Lθ

=MLT−2θ−1  

π 1=ρ
a1 Lb1μc 1 kd1  h

M 0L0T 0θ0
=(M L−3 )

a1
Lb1 (M L−1T−1 )

C 1
(MLT−2θ−1 )

d 1
MT−2θ−1

Comparing the powers of θ in RHS and LHS

0=−d1−1  ;  d1=−1

Comparing the powers of  T in RHS and LHS

0=−C1−2d1−2 ;           0=−C1−2 (−1 )−2  ;   C1=2−2 ;  C1=0

Comparing the powers of  M in RHS and LHS

0=a1+C1+d1+1 ;0=a1+0+(−1 )+1  ;     0=a1−0−1+1  ;  a1=0

Comparing the powers of  L in RHS and LHS

0=−3a1+b1−C1+d1;   0=−3 (0 )+b1−0+ (−1 ) ;  0=0+b1−0−1 ;  b1=+1

Hence π 1=ρ
0 L1μ0  K−1h



π 1=
hL
K

=N u

π 2=ρ
a2 Lb2μc 2  K d2V

M 0L0T 0θ0
=(M L−3 )

a2
Lb2 (M L−1T−1 )

C 2
(MLT−2θ−1 )

d 2
LT−1

Comparing the powers of θ in RHS and LHS

0=−d2+0  ;  d2=0

Comparing the powers of  T in RHS and LHS

0=−C2−2d2−1 ;        

 0=−C2−2 (0 )−1  ;   

C2=0−1  ;

 C2=−1

Comparing the powers of  M in RHS and LHS

0=a2+C2+d2+0 ;

0=a2+(−1 )+0+0  ;     

0=a2−1+0+0  ;

  a2=+1

Comparing the powers of  L in RHS and LHS

0=−3a2+b2−C2+d2+1 ;   

0=−3 (1 )+b2−(−1 )+0+1;  

0=−3+b2+1+0+1 0=−1+b2

b2=1

π 2=ρ
1L1 μ−1  K 0V

π 2=
ρLV
μ

 ;   π 2=Re

π 3=ρ
a3 Lb3μc3  K d3Cp



M 0L0T 0θ0
=(M L−3 )

a3
Lb3 (M L−1T−1 )

C 3
(MLT−2θ−1)

d3
L2T−2θ−1

Comparing the powers of θ in RHS and LHS

0=−d3−1  ;  d3=−1

Comparing the powers of  T in RHS and LHS

0=−C3−2d3−2 ;        

 0=−C3−2 (−1 )−1  ;   

C3=2−1  ;

 C3=1

Comparing the powers of  M in RHS and LHS

0=a3+C3+d3+0 ;

0=a3+1+ (−1 )+0  ;     

0=a3+1−1+0   ;

  a3=0

Comparing the powers of  L in RHS and LHS

0=−3a3+b3−C3+d3+2

0=−3 (0 )+b3−(1 )+(−1 )+2

0=0+b3−1−1+2

b3=0

π 3=ρ
0 L0μ1  K−1C p

π 3=
μC p

K
; π3=Pr

π 1=f (π2 , π3 )

N u=f (Re , Pr )

N u=C R e
m Pr

n



Natural Convection

Heat transfer coefficient, h , depends on ρ ,L , βg∆θ , μ ,C p ,K

h=f (ρ , L, βg∆θ , μ ,Cp , K )

f (h , ρ , L, βg∆θ , μ ,C p , K )=0

No of variables n =7

No of fundamental dimension , m=4   ie M , L ,T , θ

Hence number of π  terms ¿n−m  

Hence number of π  terms ¿7−4  =3

Choose 3 repetitive variables ρ ,L ,V   (fluid property, Geometry, dynamic)

π 1=ρ
a1 Lb1μc 1Kd 1  h

π 2=ρ
a2 Lb2μc 2  K d2 βg∆θ

π 3=ρ
a3 Lb3μc3  K d3Cp

ρ=
kg

m3  ¿
M

L3
=M L−3

;   L=L ;  βg∆θ=
1
K
m

s2
K=

L

T 2
=LT−2 ;μ=

N−sec

m2

¿
MLT−2T
L2  ¿M L−1T−1 ; 

 h=
W
m2K

=
Nm

secm2 K
=
MLT−2L
T L2θ

=M T−2θ−1 ; Cp=
J

kg−K
=
Nm
kgK

=
MLT−2L
Mθ

=L2T−2θ−1 ;

K=
W
mK

=
Nm

secmK
=
MLT−2 L
T Lθ

=MLT−2θ−1  

π 1=ρ
a1 Lb1μc 1 kd1  h

M 0L0T 0θ0
=(M L−3 )

a1
Lb1 (M L−1T−1 )

C 1
(MLT−2θ−1 )

d 1
MT−2θ−1

Comparing the powers of θ in RHS and LHS

0=−d1−1  ;  d1=−1

Comparing the powers of  T in RHS and LHS



0=−C1−2d1−2 ;           0=−C1−2 (−1 )−2  ;   C1=2−2 ;  C1=0

Comparing the powers of  M in RHS and LHS

0=a1+C1+d1+1 ;0=a1+0+(−1 )+1  ;     0=a1−0−1+1  ;  a1=0

Comparing the powers of  L in RHS and LHS

0=−3a1+b1−C1+d1;   0=−3 (0 )+b1−0+ (−1 ) ;  0=0+b1−0−1 ;  b1=+1

Hence π 1=ρ
0 L1μ0  K−1h

π 1=
hL
K

=N u

π 2=ρ
a2 Lb2μc 2  K d2 βg∆θ

M 0L0T 0θ0
=(M L−3 )

a2
Lb2 (M L−1T−1 )

C 2
(MLT−2θ−1 )

d 2
LT−2

Comparing the powers of θ in RHS and LHS

0=−d2+0  ;  d2=0

Comparing the powers of  T in RHS and LHS

0=−C2−2d2−2 ;        

 0=−C2−2 (0 )−2  ;   

C2=0−2  ;

 C2=−2

Comparing the powers of  M in RHS and LHS

0=a2+C2+d2+0 ;

0=a2+(−2 )+0+0  ;     

0=a2−2+0+0  ;

  a2=+2

Comparing the powers of  L in RHS and LHS

0=−3a2+b2−C2+d2+1 ;   

0=−3 (2 )+b2−(−2 )+0+1;  



0=−6+b2+2+0+1 0=−3+b2

b2=+3

π 2=ρ
2 L+3 μ−2  K0 βg∆θ

π 2=
ρ2L3 βg∆θ

μ2  ;   π 2=Gr

π 3=ρ
a3 Lb3μc3  K d3Cp

M 0L0T 0θ0
=(M L−3 )

a3
Lb3 (M L−1T−1 )

C 3
(MLT−2θ−1)

d3
L2T−2θ−1

Comparing the powers of θ in RHS and LHS

0=−d3−1  ;  d3=−1

Comparing the powers of  T in RHS and LHS

0=−C3−2d3−2 ;        

 0=−C3−2 (−1 )−1  ;   

C3=2−1  ;

 C3=1

Comparing the powers of  M in RHS and LHS

0=a3+C3+d3+0 ;

0=a3+1+ (−1 )+0  ;     

0=a3+1−1+0   ;

  a3=0

Comparing the powers of  L in RHS and LHS

0=−3a3+b3−C3+d3+2

0=−3 (0 )+b3−(1 )+(−1 )+2

0=0+b3−1−1+2

b3=0



π 3=ρ
0 L0μ1  K−1C p

π 3=
μC p

K
; π3=Pr

π 1=f (π2 , π3 )

N u=f (Gr ,P r )

N u=CG r
mP r

n

Dimensionless Numbers involved in Convection

Prandtl  Number:

It is defined as the ratio of Kinematic viscosity  to thermal diffusivity

Pr=
ϑ
α
; Pr=

μ
ρ
K
ρC p

; Pr=
μC p

K

Pradtl Number is the parmeter which relates the thickness of hydraodynaamic and 
thermal boundary layer

If   Pr=1                          then  δ t ( x )=δ h ( x )

If Pr<1                        then δ t ( x )>δh ( x )

If Pr>1                        then δ t ( x )<δh ( x )

Nusselt Number: is the ratio of convective heat transfer to conductive heat 
transfer across the boundary

N u=
hA ∆T
KA ∆T
L

   ;                Nu=
hL
K

Nusselt number close to 1 indicates Heat transfer of similar magnitude which is a 
charecterstic of slug flow or laminar flow (Range 1-10) 

A large Nusselt Number corresponds to more active convection with turbulent flow 
(Range of 100 to 1000)

Reynolds Number: It is the ratio of Inertia force to viscous force within the fluid  
which is subjected to relative internal movement due to different fluid velocities

ρAV L2



Re=
Inertiaforce
Viscous force

 ;     

Re=
mass∗Accerlation
shear stress∗Area

; Re=
ma
τ∗A

  ; Re=
ρU ∞L

μ

Reynold number is an important parameter to determine whether flow is laminar or 
turbulent which is very much essential in designing pipe 

In flow over the plate if Reynolds number is less than 5x105  flow is laminar

If Re ¿5 x105  then flow is turbulent

In flow through tube if Re ¿5 x105  flow is laminar if Re ¿2300 flow is turbulent

Grashoff Number: It is dimensionless number which approximates the ratio of the 
buoyancy force to viscous force acting on fluid. It involved in the study of situations 
invoving matural convection and is analogous to Reynold Number

Gr=
ρ2 L3βg ∆θ

μ2  where

ρ isthe density , Lis theCharecterstic length ,β is coefficient of thermal expansion, g isthe acceraltion

due to gravity , ∆θ  is the temperature difference between the surface and fluid 
over which it flows, μ  is absolute viscosity

Rayleigh Number : is the product of Grshof Number and Prandtl Number . It 
determines whether the flow is laminar and turbulent in natural convection Heat 
transfer

Ra=G rPr ;   
Ra=

ρ2L3 βg∆θ
μ2 ∗μC p

K

 ;    Ra=
ρ2 L3βg ∆θC p

μK

ρ isthe density , Lis theCharecterstic length ,β is coefficient of thermal expansion, g isthe acceraltion

due to gravity , ∆θ  is the temperature difference between the surface and fluid 

over which it flows, μ  is absolute viscosity , Cp is the specific heat of fluid, K is 
thermal conductivity of material .

Stanton Number: It is the ratio of heat transferred into the fluid to thermal 
capacity of the fluid

Heat transferred

S tx=¿ the fluid ¿
thermal capacity of fluid



S tx=
hA∆T
mCp∆T

;       S tx=
hA ∆T

ρAU ∞C p∆T
;       S tx=

h
ρU∞C p

S tx=
h
x
K

ρU∞C p
x
K
ϑ
ϑ

     

  S tx=
h
x
K

U∞ x

ϑ
ρϑCp

K

       

S tx=
h
x
K

U∞ x

ϑ
μC p

K

S tx=
N ux

R exPr

Peclet Number: It is defined as the ratio of the thermal energy convected to the 
fluid to the thermal energy conducted within the fluid 

Pe=
Heat transfer by convection
Heat transfer by conduction

 within the fluid

It is the product of Reynold Number and Prandtl Number

Pe=RePr

Pe=
ρU ∞L

μ

μCp

K
;     

Pe=
ρC pU ∞L

K

1. The exact expression for local Nusselt number for the laminar flow along a
surface is given by 

Nux=
hx x
k

=0.332R ex
1
2 Pr

1
3

Show that the average heat transfer coefficient from x= 0 to x =L over the
length L of the surface is given by 2hL is the local heat transfer coefficient at
x=L                                        05 Dec13/Jan14



2. An approximate expression for temperature profile in thermal boundary layer
is given by

T ( x , y )−T w
T ∞−T w

 =
3
2

y
δt ( x )

−
1
2 [ y
δt (x ) ]

3

, where 
δ t ( x)=4.53

x

R ex
1
2 Pr

1
3

3. Develop an expression for local heat transfer coefficient h(x)   4b June/July13
06

4. A fan provides a speed upto 50 m/ s is used in low speed wind tunnel with
atmospheric air at 27  oC.If this wind Tunnel is used to study the boundary
layer  behavior  over  a  flat  plate  upto  are  Re=108.  What  should  be  the
minimum length?.  At what distance from the leading edge would transition
occur, if critical Reynolds number Recr=5x105?   4b, 08 Dec17/Jan18

5. Calculate the approximate Reynold numbers and state if the flow is laminar or
turbulent for the following

i) A  10  m  long  yatch  sailing  at  13  km  per  hour  in  sea  water,  
� ¿ 1000 kg/m3 and μ=¿ 1.3 x10-3kg/ms

ii) A compressor disc of radius 0.3 m rotating at 15000 RPM in air at 5 bar
and 400 oC

           ¿ μ=
1.46 x10−6T

3
2

(110+T )
 kg/ms       4c, 08   Dec17/Jan18

6.  A fan provides a speed upto 50 m/ s is used in low speed wind tunnel with
atmospheric air at 27 oC.If this wind Tunnel is used to study the boundary

layer behavior over a flat plate upto are Re=108. What should be the
minimum length?.  At what distance from the leading edge would transition

occur, if critical Reynolds number Recr=5x105?   4b, 08 Dec17/Jan18

7.
Forced Convection PROBLEMS
1. A plate of length 750 mm and width 250 mm has been placed longitudinally

in a stream of crude oil which of which flows with a velocity of 5m/s. If the oil
has a specific gravity of 0.8 and kinetic viscosity of 10-4 m2 /s. Calculate i)
boundary layer thickness at the middle of the plate ii) Shear  stress at the
middle  of  the  plate  iii)  friction  drag  on  one  side  of  the  plate   4b,06
Dec14/Jan15 06
Note: ρ=1000∗spgravity=1000∗0.8=800 kg/m3

Calculate  i)  boundary  layer  thickness  at  the middle  of  the plate  ii)  Shear
stress at the middle of the plate
Since question has been asked at the middle 

Take x=
0.750

2
=0.325m for reynolds number , thicknessof boundary layer cal culation



For iii) sub question  friction Drag force 
Entire plate is to be considered 
Here Reyonold number to be calculated by taking x =0.750
Then calculate Ć fL=1.328 Rex

−0.5

Average shear stress τav=Ć fL
1
2
ρU ∞

2

Total Drag Force=Averageshear stress∗Area  where  Area ¿w∗L
L=0.750m

2. Air at 20 oC flows over thin plate with a velocity of 3 m/sec. The plate is 2 m
long and 1 m wide. Estimate the boundary layer thickness at the trailing edge
of  the  plate  and  the  total  drag  force  experienced  by  the  plate.  (4c,  06,
June/July16)

3. Air at 30 oC  and atmospheric pressure is flowing over a flat plate at a velocity
3 m/s, plate is 30 cm wide and at a temperature of 60  oC ,calculate at X=
0.3m 
i) thickness of velocity and thermal boundary layer 
ii) local and average friction coefficients 
iii)local and average heat transfer coefficients
iv) total drag force on the plate    4b, 10, June/July2018

T ∞=30oC ;T s=60oC  ;    U∞=3m /s

At  x=0.3m i) δ h=?     ;    δ t=?     ii) C fx=?   Ć fL=?  iii) hx=0.3=?, 

haverage=?
iii) Total Drag force=?
Solution

T f=
T s+T ∞

2
=

60+30
2

=45oC

ρ=
1.128+1.093

2
=1.1105 kg/m3

; γ=
16.96+17.95

2
x 10−6

=17.455 x10−6m2
/s

Pr=
0.669+.698

2
=0.6835 ;  k=

0.02756+0.02826
2

=0.02791W /mK

Rex=
U∞ x

γ
  ;      At x=0.3m                        Rex=

3∗0.3

17.455∗10−6
=0.5156 x105

Since Rex<5 x105  flow over the plate along width of 0.3 m is laminar

i¿δ hx=5 x Rex
−0.5  from data Hand Book Page number 

At x=0.3m 

δ hx=5∗0.3∗(0.51 x105 )
−0.5

; δ hx=6.605∗10−3m

Thickness of Hydrodynamic boundary layer thickness at x=0.3m is  6.605mm

δTx=δ hxPr
−0.333 ;    δTx=6.605∗10−3

∗0.6835−0.3333 ;   δ Tx=7.498∗10−3m



Thermal  Boundary layer thickness at x=0.3m is 7.498mm
ii) Local Drag coefficient and average Drag coefficient 

C fx=0.664 Rex
−0.5 ;  C fx=0.664∗(0.5156 x105 )

−0.5
;   C fx=2.924∗10−3

Ć fL=1.328 Rex
−0.5 ; Ć fL=1.328∗(0.5156 x105 )

−0.5
; Ć fL=5.84846∗10−3

iii) Local Heat transfer coefficient at x=0.3m and average heat transfer coefficient 

Local Nusselt Number N ux=0.332Rex
0.5 Pr

0.333

At x=0.3m , N ux=0.332∗¿ ; N ux=66.4 1

N ux=
hx x

K
;   66.41=

hx∗0.3

0.02791
;      hx=6.178W /m2K

Local Heat Transfer coefficient at x=0.3m  is 6.178W /m2K
Average heat  transfer  coefficient  over  width x=0.3 = 2  hx              since

Ń u=2Nux

Hence Average Heat transfer coefficient = 2∗6.178=12.357W /m2K
iv)Total Drag force

Average shear stress τav=Ć fL
1
2
ρU ∞

2

τav=5.84846∗10−3 1
2

* 1.1105∗32 ; τav=0.0292N /m2

Total Drag Force=Averageshear stress∗Area  where  Area ¿w∗L

F=0.0292∗(0.3∗1 )          Length is assumed as 1m

4. Air at 20 oC and at a pressure of 1 bar is flowing over a flat plate at a velocity
of  3m/s,  if  the  plate  is  280  mm  wide  and  56oC.  Calculate  the  following
quantities  x  =280  mm,  given  that  the  properties  of  air  at  bulk  mean

temperature 38 oC are  ρ=¿  1.1374 kg /m3 ,K =0.02732 W/moC ,  Cp=¿

1.005  kJ/  kg  K,  γ=16.768 x10−6 ,  Pr =0.7.   Determine  i)  boundary  layer
thickness  ii)  thickness  of  thermal  boundary  layer  iii)  local  heat  transfer
Coefficient iv) Average convective heat transfer coefficient v) Rate of heat
transfer by Convection vi) total drag force on the plate     4b,12 Dec15/jan16

5. Air  at  27 oC and 1 atmosphere pressure flows over a heated plate with a
velocity of 2 m/s. The plate is at uniform temperature of 60  oC. Calculate the
heat transfer rate from first 0.2m of the plate (08, 5b, Dec17/Jan2018) 

6. Air at a temperature of 20 oC ,flows over a flat plate 3m/s. The plate is 50
cmx25 cm. Find the heat lost per hour if the air flow is parallel to 50 cm side
of the plate. If 25cm side is kept parallel to the air flow, what will be the effect
on heat transfer? Temperature of the plate is 100 oC (5c,08, 5c, Dec14/Jan15)

7.   Atmospheric  air at 275 K and free stream velocity 20 m/s flows over a flat
plate of length 1.5 m long maintained at 325 K. Calculate 

i) The average heat transfer Coefficient over the region where the boundary
layer is laminar



ii)  Find the average heat transfer over the entire length 1.5 m of the plate.
iii) Calculate the total heat transfer rate from the plate to air over the length

of 1.5 m and width 1 m, assume transition occurs at Reynold  number
2x105. Take  air properties at mean Temperature of 300K

K=0.026W/m oC, Pr=0.708   γ  =16.8x10-6 m2/s,  μ=1.98 x10−5kg /ms (12, 5c,
June/July14)

Length up to which flow is laminar

Critical Reynold number Rec=
U∞ Lc
γ

  ;      At x=1.5m

2∗105
=

20∗Lc
16.8∗10−6 ;  Lc=0.168m ; ie upto 0.168 flow is laminar remaining length 

flow is turbulent
Average heat transfer coefficient over laminar region 

Average Nusselt Number=2N ux=2∗0.332 Rex
0.5 Pr

0.333

Average Nusselt Number=0.664 R ex
0.5 Pr

0.333

N u=0.664∗(2x 105 )
0.5

0.7080.3333 ;     Nu=264.69

264.69=
h∗0.168
0.026

;   ;      ´hlaminar=40.96W /m2K

Average heat Transfer coefficient for entire length (ie Laminar region + Turbulent 
Region)

Ń uL=P r
0.333 (0.037 ReL

0.8−A )  where A=0.037Rcr
0.8

−0.664 Rcr
0.5

A=0.037 (2∗105 )
0.8

−0.664 (2x105 )
0.8 ; A=347.26

ReL=
U∞ L

γ
; ReL=

20∗1.5
16.8∗10−6 ;  ReL=1.786∗105

Ń uL=0.7080.3333 (0.037 (1.786 x 106 )
0.5

−347.26 ) ;     ŃuL=3000

Ń uL=
h́ L
K
;   66.41=

h́∗1.5
0.026

;  h́=52W /m2 K

Total Heat Transfer 
Q=hA (T s−T ∞ ) ; Q=52∗(1.5∗1 ) [325−275 ] ;  Q=3900Watts

8. Air at 20 oC flows past 800 mm long plate at velocity of 45 m/s. If the surface
of the plate is maintained at 300oC, determine i) the heat transfer from the
entire plate length to air taking into consideration both laminar and turbulent
portion of the boundary layer ii) the percentage error if the boundary layer is
assumed to be turbulent  nature from the very leading edge of the plate .
Assume unit width of the plate and critical Reynolds number to be 5x105.(12,
5b, June/July16)



T ∞=20oC ;T s=300oC  ;    U∞=45m /s

T f=
T s+T ∞

2
=

300+20
2

=160oC

γ=30.09 x10−6m2
/s ; Pr=0.682 ;   k=0.03640W /mK

Critical Reynold number Rec for exteranl flow is  5 x105

Critical Reynold number Rec=
U∞ Lc
γ

                          5 x105
=

45∗Lc
30.09 x10−6 ; Lc=0.334m

Since length is 800 mm ie 0.8m greater than critical length flow is laminar turbulent
Hence from data hand book Page number

Ń uL=P r
0.333 (0.037 ReL

0.8−871 )    if Critical Reynold number Rec for exteranl flow is  5 x105

ReL=
U∞ L

γ
; ReL=

45∗0.8
30.09 x 10−6 ;  ReL=1.196∗106

Ń uL=0.6820.3333 (0.037 (1.196 x 106 )
0.8

−871 ) ;     ŃuL=1604.79

Ń uL=
h́∗L
K

;   1604.79=
h́∗0.8

0.03640
;  h́=73.01W /m2 K

Total Heat Transfer 
Q1=hA (T s−T∞ ) ; Q1=73.01∗(0.8∗1 ) [300−20 ] ;  Q1=16356.11Watts

Case 2: 
Assuming Boundary layer assumed to be turbulent over entire length 
Page No 113 /equation 1.4.1

Ń uL=0.037R eL
0.8P r

0.333

Ń uL=0.037∗(1.196 x 106 )
0.8

∗0.6820.3333 ;  Ń uL=2371.57

Ń uL=
h́∗L
K

;   2371.57=
h́∗0.8

0.03640
;  h́=107.90W /m2 K

Total Heat Transfer 
Q2=hA (T s−T∞ ) ; Q2=107.90∗(0.8∗1 ) [300−20 ] ;  Q2=24171.09Watts

Percentage by considering the plate is turbulent nature from the leading edge 
Q1−Q2

Q1

x100 ;    
16356.11−24171.09

16356.11
x 100 ;   −47

9. Atmosphere air at 275K and free stream velocity of 20 m/s flows over a long
flat plate maintained at uniform temperature of 325K, calculate i) Average
heat transfer coefficient over the region of  the laminar boundary layer ii)
average heat transfer coefficient over the entire length of 1.5 m iii) Total heat
transfer coefficient over the entire length of 1.5 m (5b, 10, Dec18/Jan19) 



10.Air flows over a flat plate at 30oC , 0.4m wide and 0.75m long with a velocity
of  20  m/s  .  Determine  the  heat  transfer  from  the  surface  of  the  plate
assuming plate is maintained at 90 oC 

Use NuL=0.664 Re
0.5 Pr

0.33  for laminar

N uL=(0.036 Re
0.8−0.836 )Pr

0.333  for  turbulent  (7b.  15  scheme  June/July  2018

08 ), 
June/July 2013

11.Air at  velocity of 3 m/s and at 20 oC flows over a flat plate along its length.
The length width and thickness of the plate are 100 cm, 50 cm and 2 cm
respectively. The top surface of the plate is maintained at 100 oC. Calculate
the heat lost by the plate and temperature of bottom surface of the plate for
the steady state conditions. The thermal conductivity of the plate may be
taken as 23 W/mK
(08, 5c, Dec17/Jan2018)

12.The velocity of water flowing through a tube of 2.2 cm dia is 2m/s. Steam
condensing at 150oC on the surface of the tube heats the water from 15oC to
60oC over the length of tube. Find the heat transfer coefficient and the length
of  the tube neglecting the tube and steam side film resistance.  Take the

following  properties  of  water  at  mean  temperature  :  ρ=850 kg/m3

Cp=2000J /kgoC  γ=5.1 x10−6m2
/sec  K=0.2W/ moC

INTERNAL FLOW
Critical Reynold number is 2300 which determines the flow is laminar or turbulent
unless and until it is specified in the problem  
Characteristic length is Diameter
 

ReD=
U∞D

γ

13.A tube 5m long is maintained at 100 oC by steam jacketing. A fluid flows
through the tube at the rate of 175 kg/hr at 30 oC . The diameter of the tube
is 2  cms. Find out the average heat transfer coefficient. Take the following
properties of the fluid



               ρ=850 kg/m3 ,  Cp=2000J/kgoC, γ  =5.1x10-6 m2/s, K=0.2W/moC,  (10,5b,
June/July17)

ReD=
U∞D

γ
;

If mass flow rate is given please note down to calculate the velocity of fluid as 
follows 
m=ρ AfU ∞  where m is the mass flow rate in kg/s , A f  is the area of flow ,

U∞=the velocityof fluid inside thetube

m=175 kg /hr   m=
175
3600

 kg/s ; A f=
π ¿0.022

4

Hence,    175
3600

=
850∗π¿ 0.022

4
∗U ∞    ;    U∞=0.1820m /s

ReD=
0.1820∗0.02

5.1∗10−6 ;  ReD=713.88

Since ReD<2300 flow is laminar 
From  Page  114  equation  1.2.1  for  circular  tube  constant  wall  temperature
N u=3.66

N u=
h́∗D
K

;                                   3.66=
h́∗0.02

0.2
  ;  h=36.6W /m2K

If rate of heat transfer asked 

Q=h AHT ((T s−T ∞ ))
14.Lubricating oil at a temperature of 60 oC enters a 1 cm diameter tube with a

velocity of 3.5 m/ s. The tube surface is maintained at 30  oC. Calculate the
tube length required to cool the oil to 45 oC. Assume  that the oil has the
following  average  properties  for  the  temperature  range  of  this  problem
ρ=¿ 865kg/m3  ,  K=0.14 W/mK , Cp=1.78kJ/kgK, and  γ=¿  9x10-6 m2/s

(08 ,Dec18/Jan19, 7b, 15 scheme)
15.Water flows at a velocity of 12 m/ s in a straight tube of 60 mm diameter. The

tube surface temperature is maintained at 70 oC and the flowing water is
heated from the inlet temperature of 15 oC to an outlet temperature of 45 oC.
Taking the principal properties of water at the mean bulk temperature of 30  oC

as ρ=995.7 kg/m3 ,  Cp=4.174kJ/kgK ,K=0.61718W/mK ,  γ  =0.805x10-6

m2/s, and Pr=5.42 . calculate i)heat transfer Coefficient from the tube surface
to  the  water.ii)  the  heat  transferred  iii)  the  length  of  the  tube  (10,5b,
Dec16/Jan17)

ReD=
U∞D

γ
; ReD=

12∗0.06
0.0805∗10−6 ;  ReD=8.944∗105

ReD>2300,  Hence the flow is turbulent 



From Data Hand Book Page number    equation 

NuD=0.023R eD
0.8Pr

n    wher n=0.3 for cooling of fluid n=0.4 for heating of fluid 

In the problem water is heated from 150C to 450C Hence n=0.4

N uD=0.023R eD
0.8Pr

0.4 ; N uD=0.023 (8.944∗105 )
0.8
∗5.420.3333 ; NuD=609.47

N uD=
h́∗D
K

;                                   609.47=
h́∗0.06
0.61718

  ;  h=26841W /m2 K

Q=h AHT LMTD

LMTD=
θi−θ0

ln
θi
θ0

;  where θi=T s−T wi=70−15=55oC ;  θ0=T s−T wo=70−45=25oC

LMTD=
θi−θ0

ln
θi
θ0

; LMTD=
55−25

ln
55
25

;    LMTD=38.040C  

A HT=πDL=π∗0.06∗L

Also Rateof Heat transfer=Heat gained by water ieQ=mwC pw (T wo−T wi )

mw=ρ A fU ∞=ρ
π D2

4
U ∞;mw=995.7( π 0.062

4 )12  kg/s

Q=995.7 (π 0.062

4 )12∗4.174∗( 45−15 ) ;  Q=4.23∗106Watts

4.23∗106
=26841∗(π∗0.06∗L )∗38.04 ;    L=21.97m

16.Air at 2 atm and 200oC is heated as it flows at a velocity of 12m/s through a
tube with a diameter of 3cm. A constant heat flux condition is maintained at
the wall and the wall temperature  is 20oC above the air temperature all along
the lenth of the tube . Calculate  
i) The heat transfer per unit length of tube
ii) The increase in bulk temperature of air over a 4m length of the tube.

Take  the  following  properties  of  air  Pr=0.681  ,  μ=¿ 2.57 x10−5 kgm /s
K=0.0396W/mK and Cp=1.025 kJ /kgK  (Dec13/Jan14)

 
17.Hot air at atmospheric pressure and 80 oC enters an 8m long uninsulated

square duct of cross section 0.2 m x 0.2m that passes through the attic of a
house at a rate of 0.15 m3/s. The duct is observed to be nearly isothermal at
60 oC. Determine the exit temperature of the air and the rate of heat loss
from the duct to attic space (10,5c,June/July2015)



18.Consider air at atmospheric pressure and 100 oC enters a 2m long tube of 4
cm diameter with a velocity of 9 m/s. A 1 KW electric heater is wound on the
outer surface of the tube, find i) Exit temperature of air ii) mass flow rate of
air iii)  wall temperature. Assume that the rate of heat absorption by air per
unit area is uniform throughout length of the tube(10, 5b, June/July2018)

19.A refrigerated truck is moving on a highway 90 km/hr  in desert area,  where
the ambient air temperature is 50 oC. The body of the truck is a rectangular
box  measuring  10m(length)  x  4m  (width)x3m(Height)  .  Assume  that  the
boundary layer on the four walls is turbulent. The heat transfer takes only
from the four surfaces and the wall  surfaces of the truck is maintained at
10oC. Neglecting the heat transfer from the front and back and assuming flow
to be parallel to 10m long side. Calculate i) the heat lost from four surfaces ii)
The power required to overcome the resistance acting on the four surfaces.

The properties of  air ( at tf =30 oC) take  ρ=1.165kg /m3 ,   Cp=1.005kJ/kgK,

K=0.02673W/m oC,    γ  =16x10-6m2/s ,  Pr=0.701 (10 , 5b Dec15/Jan16)
(5b, 10, Dec15/Jan16)

20.  A hot plate 1 mx0.5 m at 130oC is kept vertically in still air at 20 oC. Find i)
heat transfer coefficient ii) Initial rate of cooling the plate in oC/min.iii) Time
required  for  cooling  plate  180oC  to  80  oC  if  the  heat  transfer  is  due  to
convection only 
Take mass of  the plate as 20 kg, Cp= 400 J/kgK, Assume 0.5 mm size is
vertical  and convection  takes  place  from both sides  of  the  plate  (10,  4c,
Dec18/Jan19)



1. The exact expression for local Nusselt number for the laminar flow along a
surface is given by 

Nux=
hx x
k

=0.332R ex
1
2 Pr

1
3

Show that the average heat transfer coefficient from x= 0 to x =L over the
length L of the surface is given by 2hL is the local heat transfer coefficient at
x=L                                        05 Dec13/Jan14

8. An approximate expression for temperature profile in thermal boundary layer
is given by

T ( x , y )−T w
T ∞−T w

 =
3
2

y
δt ( x )

−
1
2 [ y
δt (x ) ]

3

, where 
δ t ( x)=4.53

x

R ex
1
2 Pr

1
3

9. Develop an expression for local heat transfer coefficient h(x)   4b June/July13
06

10.A fan provides a speed upto 50 m/ s is used in low speed wind tunnel with
atmospheric air at 27  oC.If this wind Tunnel is used to study the boundary
layer  behavior  over  a  flat  plate  upto  are  Re=108.  What  should  be  the
minimum length?.  At what distance from the leading edge would transition
occur, if critical Reynolds number Recr=5x105?   4b, 08 Dec17/Jan18

11.Calculate the approximate Reynold numbers and state if the flow is laminar or
turbulent for the following

iv) A  10  m  long  yatch  sailing  at  13  km  per  hour  in  sea  water,  
� ¿ 1000 kg/m3 and μ=¿ 1.3 x10-3kg/ms

v) A compressor disc of radius 0.3 m rotating at 15000 RPM in air at 5 bar
and 400 oC

           ¿ μ=
1.46 x10−6T

3
2

(110+T )
 kg/ms       4c, 08   Dec17/Jan18

12.  A fan provides a speed upto 50 m/ s is used in low speed wind tunnel
with atmospheric air at 27 oC.If this wind Tunnel is used to study the boundary

layer behavior over a flat plate upto are Re=108. What should be the



minimum length?.  At what distance from the leading edge would transition
occur, if critical Reynolds number Recr=5x105?   4b, 08 Dec17/Jan18

13.
Forced Convection PROBLEMS
1. A plate of length 750 mm and width 250 mm has been placed longitudinally

in a stream of crude oil which of which flows with a velocity of 5m/s. If the oil
has a specific gravity of 0.8 and kinetic viscosity of 10-4 m2 /s. Calculate i)
boundary layer thickness at the middle of the plate ii) Shear  stress at the
middle  of  the  plate  iii)  friction  drag  on  one  side  of  the  plate   4b,06
Dec14/Jan15 06
Note: ρ=1000∗spgravity=1000∗0.8=800 kg/m3

Calculate  i)  boundary  layer  thickness  at  the middle  of  the plate  ii)  Shear
stress at the middle of the plate
Since question has been asked at the middle 

Take x=
0.750

2
=0.325mfor reynolds number , thicknessof boundary layer calculation

For iii) sub question  friction Drag force 
Entire plate is to be considered 
Here Reyonold number to be calculated by taking x =0.750
Then calculate Ć fL=1.328 Rex

−0.5

Average shear stress τav=Ć fL
1
2
ρU ∞

2

Total Drag Force=Averageshear stress∗Area  where  Area ¿w∗L
L=0.750m

2. Air at 20 oC flows over thin plate with a velocity of 3 m/sec. The plate is 2 m
long and 1 m wide. Estimate the boundary layer thickness at the trailing edge
of  the  plate  and  the  total  drag  force  experienced  by  the  plate.  (4c,  06,
June/July16)

3. Air at 30 oC  and atmospheric pressure is flowing over a flat plate at a velocity
3 m/s, plate is 30 cm wide and at a temperature of 60  oC ,calculate at X=
0.3m 
i) thickness of velocity and thermal boundary layer 
ii) local and average friction coefficients 
iii)local and average heat transfer coefficients
iv) total drag force on the plate    4b, 10, June/July2018

T ∞=30oC ;T s=60oC  ;    U∞=3m /s

At  x=0.3m i) δ h=?     ;    δ t=?     ii) C fx=?   Ć fL=?  iii) hx=0.3=?, 

haverage=?
vi) Total Drag force=?
Solution

T f=
T s+T ∞

2
=

60+30
2

=45oC



ρ=
1.128+1.093

2
=1.1105 kg/m3

; γ=
16.96+17.95

2
x 10−6

=17.455 x10−6m2
/s

Pr=
0.669+.698

2
=0.6835 ;  k=

0.02756+0.02826
2

=0.02791W /mK

Rex=
U∞ x

γ
  ;      At x=0.3m                        Rex=

3∗0.3

17.455∗10−6
=0.5156 x105

Since Rex<5 x105  flow over the plate along width of 0.3 m is laminar

i¿δ hx=5 x Rex
−0.5  from data Hand Book Page number 

At x=0.3m 

δ hx=5∗0.3∗(0.51 x105 )
−0.5

; δ hx=6.605∗10−3m

Thickness of Hydrodynamic boundary layer thickness at x=0.3m is  6.605mm

δTx=δ hxPr
−0.333 ;    δTx=6.605∗10−3

∗0.6835−0.3333 ;   δ Tx=7.498∗10−3m
Thermal  Boundary layer thickness at x=0.3m is 7.498mm
ii) Local Drag coefficient and average Drag coefficient 

C fx=0.664 Rex
−0.5 ;  C fx=0.664∗(0.5156 x105 )

−0.5
;   C fx=2.924∗10−3

Ć fL=1.328 Rex
−0.5 ; Ć fL=1.328∗(0.5156 x105 )

−0.5
; Ć fL=5.84846∗10−3

iii) Local Heat transfer coefficient at x=0.3m and average heat transfer coefficient 

Local Nusselt NumberN ux=0.332Rex
0.5 Pr

0.333

At x=0.3m , N ux=0.332∗¿ ; N ux=66.4 1

N ux=
hx x

K
;   66.41=

hx∗0.3

0.02791
;      hx=6.178W /m2K

Local Heat Transfer coefficient at x=0.3m  is 6.178W /m2K
Average heat  transfer  coefficient  over  width x=0.3 = 2  hx              since

Ń u=2Nux

Hence Average Heat transfer coefficient = 2∗6.178=12.357W /m2K
iv)Total Drag force

Average shear stress τav=Ć fL
1
2
ρU ∞

2

τav=5.84846∗10−3 1
2

* 1.1105∗32 ; τav=0.0292N /m2

Total Drag Force=Averageshear stress∗Area  where  Area ¿w∗L

F=0.0292∗(0.3∗1 )          Length is assumed as 1m

4. Air at 20 oC and at a pressure of 1 bar is flowing over a flat plate at a velocity
of  3m/s,  if  the  plate  is  280  mm  wide  and  56oC.  Calculate  the  following
quantities  x  =280  mm,  given  that  the  properties  of  air  at  bulk  mean

temperature 38 oC are  ρ=¿  1.1374 kg /m3 ,K =0.02732 W/moC ,  Cp=¿



1.005  kJ/  kg  K,  γ=16.768 x10−6 ,  Pr =0.7.   Determine  i)  boundary  layer
thickness  ii)  thickness  of  thermal  boundary  layer  iii)  local  heat  transfer
Coefficient iv) Average convective heat transfer coefficient v) Rate of heat
transfer by Convection vi) total drag force on the plate     4b,12 Dec15/jan16

5. Air  at  27 oC and 1 atmosphere pressure flows over a heated plate with a
velocity of 2 m/s. The plate is at uniform temperature of 60  oC. Calculate the
heat transfer rate from first 0.2m of the plate (08, 5b, Dec17/Jan2018) 

6. Air at a temperature of 20 oC ,flows over a flat plate 3m/s. The plate is 50
cmx25 cm. Find the heat lost per hour if the air flow is parallel to 50 cm side
of the plate. If 25cm side is kept parallel to the air flow, what will be the effect
on heat transfer? Temperature of the plate is 100 oC (5c,08, 5c, Dec14/Jan15)

7.   Atmospheric  air at 275 K and free stream velocity 20 m/s flows over a flat
plate of length 1.5 m long maintained at 325 K. Calculate 

iv) The average heat transfer Coefficient over the region where the boundary
layer is laminar

v)  Find the average heat transfer over the entire length 1.5 m of the plate.
vi) Calculate the total heat transfer rate from the plate to air over the length

of 1.5 m and width 1 m, assume transition occurs at Reynold  number
2x105. Take  air properties at mean Temperature of 300K

K=0.026W/m oC, Pr=0.708   γ  =16.8x10-6 m2/s,  μ=1.98 x10−5kg /ms (12, 5c,
June/July14)

Length up to which flow is laminar

Critical Reynold number Rec=
U∞ Lc
γ

  ;      At x=1.5m

2∗105
=

20∗Lc
16.8∗10−6 ;  Lc=0.168m ; ie upto 0.168 flow is laminar remaining length 

flow is turbulent
Average heat transfer coefficient over laminar region 

Average Nusselt Number=2N ux=2∗0.332 Rex
0.5 Pr

0.333

Average Nusselt Number=0.664 R ex
0.5 Pr

0.333

N u=0.664∗(2x 105 )
0.5

0.7080.3333 ;     Nu=264.69

264.69=
h∗0.168
0.026

;   ;      ´hlaminar=40.96W /m2K

Average heat Transfer coefficient for entire length (ie Laminar region + Turbulent 
Region)

Ń uL=P r
0.333 (0.037 ReL

0.8
−A )  where A=0.037Rcr

0.8
−0.664 Rcr

0.5

A=0.037 (2∗105 )
0.8

−0.664 (2x105 )
0.8 ; A=347.26

ReL=
U∞ L

γ
; ReL=

20∗1.5
16.8∗10−6 ;  ReL=1.786∗105



Ń uL=0.7080.3333 (0.037 (1.786 x 106 )
0.5

−347.26 ) ;     ŃuL=3000

Ń uL=
h́ L
K
;   66.41=

h́∗1.5
0.026

;  h́=52W /m2 K

Total Heat Transfer 
Q=hA (T s−T ∞ ) ; Q=52∗(1.5∗1 ) [325−275 ] ;  Q=3900Watts

8. Air at 20 oC flows past 800 mm long plate at velocity of 45 m/s. If the surface
of the plate is maintained at 300oC, determine i) the heat transfer from the
entire plate length to air taking into consideration both laminar and turbulent
portion of the boundary layer ii) the percentage error if the boundary layer is
assumed to be turbulent  nature from the very leading edge of the plate .
Assume unit width of the plate and critical Reynolds number to be 5x105.(12,
5b, June/July16)

T ∞=20oC ;T s=300oC  ;    U∞=45m /s

T f=
T s+T ∞

2
=

300+20
2

=160oC

γ=30.09 x10−6m2
/s ; Pr=0.682 ;   k=0.03640W /mK

Critical Reynold number Rec for exteranl flow is  5 x105

Critical Reynold number Rec=
U∞ Lc
γ

                          5 x105
=

45∗Lc
30.09 x10−6 ; Lc=0.334m

Since length is 800 mm ie 0.8m greater than critical length flow is laminar turbulent
Hence from data hand book Page number

Ń uL=P r
0.333 (0.037 ReL

0.8
−871 )    if Critical Reynold number Rec for exteranl flow is  5 x105

ReL=
U∞ L

γ
; ReL=

45∗0.8
30.09 x 10−6 ;  ReL=1.196∗106

Ń uL=0.6820.3333 (0.037 (1.196 x 106 )
0.8

−871 ) ;     ŃuL=1604.79

Ń uL=
h́∗L
K
;   1604.79=

h́∗0.8
0.03640

;  h́=73.01W /m2K

Total Heat Transfer 
Q1=hA (T s−T ∞ ) ; Q1=73.01∗(0.8∗1 ) [300−20 ] ;  Q1=16356.11Watts

Case 2: 
Assuming Boundary layer assumed to be turbulent over entire length 
Page No 113 /equation 1.4.1

Ń uL=0.037R eL
0.8P r

0.333

Ń uL=0.037∗(1.196 x 106 )
0.8

∗0.6820.3333 ;  Ń uL=2371.57



Ń uL=
h́∗L
K
;   2371.57=

h́∗0.8
0.03640

;  h́=107.90W /m2 K

Total Heat Transfer 
Q2=hA (T s−T ∞ ) ; Q2=107.90∗(0.8∗1 ) [300−20 ] ;  Q2=24171.09Watts

Percentage by considering the plate is turbulent nature from the leading edge 
Q1−Q2

Q1

x100 ;    
16356.11−24171.09

16356.11
x 100 ;   −47

9. Atmosphere air at 275K and free stream velocity of 20 m/s flows over a long
flat plate maintained at uniform temperature of 325K, calculate i) Average
heat transfer coefficient over the region of  the laminar boundary layer ii)
average heat transfer coefficient over the entire length of 1.5 m iii) Total heat
transfer coefficient over the entire length of 1.5 m (5b, 10, Dec18/Jan19) 

10.Air flows over a flat plate at 30oC , 0.4m wide and 0.75m long with a velocity
of  20  m/s  .  Determine  the  heat  transfer  from  the  surface  of  the  plate
assuming plate is maintained at 90 oC 

Use NuL=0.664 Re
0.5 Pr

0.33  for laminar

N uL=(0.036 Re
0.8

−0.836 )Pr
0.333  for  turbulent  (7b.  15  scheme  June/July  2018

08 ), 
June/July 2013

11.Air at  velocity of 3 m/s and at 20 oC flows over a flat plate along its length.
The length width and thickness of the plate are 100 cm, 50 cm and 2 cm
respectively. The top surface of the plate is maintained at 100 oC. Calculate
the heat lost by the plate and temperature of bottom surface of the plate for
the steady state conditions. The thermal conductivity of the plate may be
taken as 23 W/mK
(08, 5c, Dec17/Jan2018)

12.The velocity of water flowing through a tube of 2.2 cm dia is 2m/s. Steam
condensing at 150oC on the surface of the tube heats the water from 15oC to
60oC over the length of tube. Find the heat transfer coefficient and the length
of  the tube neglecting the tube and steam side film resistance.  Take the

following  properties  of  water  at  mean  temperature  :  ρ=850 kg/m3

Cp=2000J /kgoC  γ=5.1 x10−6m2
/sec  K=0.2W/ moC



INTERNAL FLOW
Critical Reynold number is 2300 which determines the flow is laminar or turbulent
unless and until it is specified in the problem  
Characteristic length is Diameter
 

ReD=
U∞D

γ

13.A tube 5m long is maintained at 100 oC by steam jacketing. A fluid flows
through the tube at the rate of 175 kg/hr at 30 oC . The diameter of the tube
is 2  cms. Find out the average heat transfer coefficient. Take the following
properties of the fluid

               ρ=850 kg/m3 ,  Cp=2000J/kgoC, γ  =5.1x10-6 m2/s, K=0.2W/moC,  (10,5b,
June/July17)

ReD=
U∞D

γ
;

If mass flow rate is given please note down to calculate the velocity of fluid as 
follows 
m=ρ AfU ∞  where m is the mass flow rate in kg/s , A f  is the area of flow ,

U∞=the velocityof fluid inside thetube

m=175 kg /hr   m=
175
3600

 kg/s ; A f=
π ¿0.022

4



Hence,    175
3600

=
850∗π¿ 0.022

4
∗U ∞    ;    U∞=0.1820m /s

ReD=
0.1820∗0.02

5.1∗10−6 ;  ReD=713.88

Since ReD<2300 flow is laminar 
From  Page  114  equation  1.2.1  for  circular  tube  constant  wall  temperature
N u=3.66

N u=
h́∗D
K

;                                   3.66=
h́∗0.02

0.2
  ;  h=36.6W /m2K

If rate of heat transfer asked 

Q=h AHT ((T s−T ∞ ))
14.Lubricating oil at a temperature of 60 oC enters a 1 cm diameter tube with a

velocity of 3.5 m/ s. The tube surface is maintained at 30  oC. Calculate the
tube length required to cool the oil to 45 oC. Assume  that the oil has the
following  average  properties  for  the  temperature  range  of  this  problem
ρ=¿ 865kg/m3  ,  K=0.14 W/mK , Cp=1.78kJ/kgK, and  γ=¿  9x10-6 m2/s

(08 ,Dec18/Jan19, 7b, 15 scheme)
15.Water flows at a velocity of 12 m/ s in a straight tube of 60 mm diameter. The

tube surface temperature is maintained at 70 oC and the flowing water is
heated from the inlet temperature of 15 oC to an outlet temperature of 45 oC.
Taking the principal properties of water at the mean bulk temperature of 30  oC

as ρ=995.7 kg/m3 ,  Cp=4.174kJ/kgK ,K=0.61718W/mK ,  γ  =0.805x10-6

m2/s, and Pr=5.42 . calculate i)heat transfer Coefficient from the tube surface
to  the  water.ii)  the  heat  transferred  iii)  the  length  of  the  tube  (10,5b,
Dec16/Jan17)

ReD=
U∞D

γ
; ReD=

12∗0.06
0.0805∗10−6 ;  ReD=8.944∗105

ReD>2300,  Hence the flow is turbulent 
From Data Hand Book Page number    equation 

NuD=0.023R eD
0.8Pr

n    wher n=0.3 for cooling of fluid n=0.4 for heating of fluid 

In the problem water is heated from 150C to 450C Hence n=0.4

N uD=0.023R eD
0.8Pr

0.4 ; N uD=0.023 (8.944∗105 )
0.8
∗5.420.3333 ; NuD=609.47

N uD=
h́∗D
K

;                                   609.47=
h́∗0.06
0.61718

  ;  h=26841W /m2 K

Q=h AHT LMTD



LMTD=
θi−θ0

ln
θi
θ0

;  where θi=T s−T wi=70−15=55oC ;  θ0=T s−T wo=70−45=25oC

LMTD=
θi−θ0

ln
θi
θ0

; LMTD=
55−25

ln
55
25

;    LMTD=38.040C  

A HT=πDL=π∗0.06∗L

Also Rateof Heat transfer=Heat gained by water ieQ=mwC pw (T wo−T wi )

mw=ρ A fU ∞=ρ
π D2

4
U ∞;mw=995.7( π 0.062

4 )12  kg/s

Q=995.7 (π 0.062

4 )12∗4.174∗( 45−15 ) ;  Q=4.23∗106Watts

4.23∗106
=26841∗(π∗0.06∗L )∗38.04 ;    L=21.97m

16.Air at 2 atm and 200oC is heated as it flows at a velocity of 12m/s through a
tube with a diameter of 3cm. A constant heat flux condition is maintained at
the wall and the wall temperature  is 20oC above the air temperature all along
the lenth of the tube . Calculate  
iii) The heat transfer per unit length of tube
iv) The increase in bulk temperature of air over a 4m length of the tube.

Take  the  following  properties  of  air  Pr=0.681  ,  μ=¿ 2.57 x10−5 kgm /s
K=0.0396W/mK and Cp=1.025 kJ /kgK  (Dec13/Jan14)

 
17.Hot air at atmospheric pressure and 80 oC enters an 8m long uninsulated

square duct of cross section 0.2 m x 0.2m that passes through the attic of a
house at a rate of 0.15 m3/s. The duct is observed to be nearly isothermal at
60 oC. Determine the exit temperature of the air and the rate of heat loss
from the duct to attic space (10,5c,June/July2015)

18.Consider air at atmospheric pressure and 100 oC enters a 2m long tube of 4
cm diameter with a velocity of 9 m/s. A 1 KW electric heater is wound on the
outer surface of the tube, find i) Exit temperature of air ii) mass flow rate of
air iii)  wall temperature. Assume that the rate of heat absorption by air per
unit area is uniform throughout length of the tube(10, 5b, June/July2018)

19.A refrigerated truck is moving on a highway 90 km/hr  in desert area,  where
the ambient air temperature is 50 oC. The body of the truck is a rectangular
box  measuring  10m(length)  x  4m  (width)x3m(Height)  .  Assume  that  the
boundary layer on the four walls is turbulent. The heat transfer takes only
from the four surfaces and the wall  surfaces of the truck is maintained at
10oC. Neglecting the heat transfer from the front and back and assuming flow
to be parallel to 10m long side. Calculate i) the heat lost from four surfaces ii)
The power required to overcome the resistance acting on the four surfaces.



The properties of  air ( at tf =30 oC) take  ρ=1.165kg /m3 ,   Cp=1.005kJ/kgK,

K=0.02673W/m oC,    γ  =16x10-6m2/s ,  Pr=0.701 (10 , 5b Dec15/Jan16)
(5b, 10, Dec15/Jan16)

20.  A hot plate 1 mx0.5 m at 130oC is kept vertically in still air at 20 oC. Find i)
heat transfer coefficient ii) Initial rate of cooling the plate in oC/min.iii) Time
required  for  cooling  plate  180oC  to  80  oC  if  the  heat  transfer  is  due  to
convection only 
Take mass of  the plate as 20 kg, Cp= 400 J/kgK, Assume 0.5 mm size is
vertical  and convection  takes  place  from both sides  of  the  plate  (10,  4c,
Dec18/Jan19)

Free Convection

Problems

i) On Vertical Plate Characteristic length = Hieght
ii) Vertical Cylinder Characteristic length = Hieght
iii) Horizontal Cylinder Characteristic length = Diameter 

For Vertical surface or vertical Cylinder 

Laminar if Gr Pr<109

Turbulent if Gr Pr>109

1. A hot plate 1mx0.5m  at 130oC is kept vertically in still air at 20oC.Find i) Heat
transfer Coefficient ii) heat lost to surroundings  4c, 06 June/July 2015

2.  A  vertical  plate  15  cm  high  and  10  cm  wide  is  maintained  at  140oC.
Calculate  the  maximum heat  dissipation  rate  from both  the  sides  of  the

10c
m



plates to air at 20 oC. The radiation heat transfer coefficient is 9.0 W/m2K. For
Air  at  80oC,take   γ  =21.09x10-6  Pr=0.692,   kf=  0.03W/mK,  4c,10
Dec13/Jan14

Gr=
βg∆θ L3

γ 2                                                                                        T∞=20C

β=
1

T f+273

T f=
T w+T ∞

2
;    T f=

140+20
2

=800C

β=
1

80+273
=

1
353

 ;     L=hiegth=15cm=0.15m

Gr=
1 x9.81 (140−20 )0.153

353 x (21.09 x 10−6 )
2 ;    Gr=2.530 x 107

Gr Pr=2.53 x 107 x 0.692 ;          Gr Pr=1.751 x107  ;   Gr Pr<109  hence laminar

For turbulent ¿Data Book6 th edition−equation1.2  Page 135

N u=0.59 (Gr Pr )
0.25      for    104

<Gr Pr<109

N u=0.59 (1.751 x107 )
0.25

;  N u=38.16

N u=
hL
K

;                                                  634.34=
hx 0.15
0.03

;

h=7.633w /m2K

hconv=7.633w /m2K

hrad=9w /m2K  

Total h=7.633+9=16.633w /m2K

A= (0.15 x 0.1 ) 2 ;    A=0.3m2    Since both the surfaces are exposed to air

Q=hA (T w−T ∞ ) ;   Q=16.633∗0.3∗(140−20 )   ;     Q=59.97 Watts

15cm
m

Tw=140
CC



3.  A vertical plate 4 m high and 6 m wide is maintained at 60  oC and exposed to
atmospheric air at 10 oC. Calculate the heat transfer from both sides of the
plate.  For  air   at  35oC  take  K=0.027  W/mK  
γ=¿  16.5 x10-6 m2/ s Pr =0.7 (10 Dec 2016/Jan17)

 Solution: 

4m

6m

Tw=60C

T ¥ =10C

Gr=
βg∆θ L3

γ 2

β=
1

T f+273

T f=
T w+T ∞

2
;    T f=

60+10
2

=350C

β=
1

35+273
=

1
308

 ;     L=hiegth=4m

Gr=
1 x 9.81 (60−10 ) 43

308 x (21.09 x10−6 )
2 ;    Gr=3.743x 1011

Gr Pr=3.743 x1011x 0.7 ;          Gr Pr=2.62 x1011  ;   Gr Pr>109  hence turbulent

For turbulent ¿Data Book6 th edition−equation2 .1 Page 135

N u=0.10 (Gr Pr )
0.333

N u=0.10 (2.62 x1011 )
0.333

;  Nu=634.34



N u=
hL
K

;                                                  634.34=
h x 4
0.027

;

h=4.28w /m2K

A= (6x 4 ) 2 ;    A=48m2    Since both the surfaces are exposed to air

Q=hA (T w−T ∞ ) ;   Q=4.28∗48∗(60−10 )   ;     Q=10.276∗103 Watts

Q=10 .276 kW

4.  Calculate the convection heat loss from a radiator 0.5 m wide and 1 m high
maintained at a temperature of 84 oC in a room at 20 oC. Treat the radiator as
a vertical  plate (08 ,Dec18/Jan19,  8b, 15 scheme) Hint :  Vertical  Plate L=
height = 1m

5.  A vertical pipe 15 cm OD, 1 m long has a surface temperature of 90oC. If the
surrounding air is 30 oC. What is the rate of heat loss by free convection?
4c,08  June/July13 

Gr=
βg∆θ L3

γ 2                                                                              

Tw=90oC

β=
1

T f+273

T f=
T w+T ∞

2
;    T f=

90+30
2

=600C                                            1m

T∞=30oC

At 600C , Air 

K=0.02896W/mK  ; γ=¿  18.97 x10-6 m2/ s Pr =0.696

β=
1

60+273
=

1
333

 ;     L=hiegth=1m

Gr=
1x 9.81 (90−30 )13

333 x (18.97 x 10−6 )
2 ;    Gr=4.91x 109

Gr Pr=4.91 x 109 x0.696 ;          Gr Pr=3.418 x 109  ;   Gr Pr>109  hence Turbulent

D=15c
m



For turbulent ¿Data Book6 th edition−equation2 .1 Page 135

N u=0.10 (Gr Pr )
0.333

N u=0.10 (3.418 x109 )
0.333

;  Nu=149.54

N u=
hL
K

;                                                  149.54=
h x 1

0.02896
;

h=4.33w /m2 K

A=πDL=π∗0.15∗1 ;    A=0.4712m2    Since both the surfaces are exposed to air

Q=hA (T w−T ∞ ) ;   Q=4.33∗0.4712∗(90−30 )   ;     Q=122.45 Watts

6.  The water in a tank 20 oC is heated by passing the steam through a pipe of
50 cm long and 5cm dia. If the pipe surface temperature is maintained at 80
oC i)  find the heat loss from the pipe per hour if the pipe kept horizontal ii) if
the pipe is kept vertical , then also find out the heat loss from the pipe per
hour 10 June/July 2017

Fluid is water

β=
1

T f+273

T f=
T w+T ∞

2
;    T f=

80+20
2

=500C

At 500C , water properties 

γ=
0.657+0.478

2
x10−6

=0.5675 x 10−6m2
/ s

K=
0.6280+0.6513

2
=0.63965W /mK

Pr=
4.340+3.020

2
=3.68

β forwater at  500C=0.48 x 10−3  From data Hand book Page No 29 for water 



Case1:HorizontalCylinder

Gr=
βg∆θ D3

γ2
             ;When the pipe is Horizontal  Characteristic length is

Diameter 

Gr=
βg∆θ D3

γ2

Gr=
0.48 x10−3 x 9.81 (80−20 ) 0.053

(0.5675 x10−6 )
2 ;    Gr=1.09 x 108

Gr Pr=1.09 x108 x 3.68 ;          Gr Pr=4.0354 x108  

Horizontal cylinder

¿DataBook 6 thedition−equation3 .1 Page 137

N u=C (GrP r )
m  and C=0.125,m=0.333 for 107

<G rPr>1012

N u=0.125 (Gr Pr )
0.333

N u=0.125 (4.0354 x108 )
0.333

;  N u=91.76

N u=
hD
K

;                                                  91.76=
h x 0.05
0.63965

;

h=1173.93w /m2 K

A=πDL=π∗0.05∗0.5 ;    A=0.0785m2    

Q=hA (T w−T ∞ ) ;   Q=1173.93∗0.0785∗(80−20 )   ;     Q=5532.02 Watts

Case 2: Vertical cylinder

Gr=
βg∆θ D3

γ2
             ;When the pipe is Horizontal  Characteristic length is

Diameter 

Gr=
βg∆θ L3

γ 2

D

L Water



Gr=
0.48 x10−3 x 9.81 (80−20 ) 0.53

(0.5675 x10−6 )
2 ;    Gr=1.0965 x1011

Gr Pr=1.09 x1011x 3.68 ;          Gr Pr=4.0354 x1011  ; Gr Pr>109

Vertical cylinder

¿DataBook 6 thedition−equation2 .1 Page 135

N u=0.1 (Gr Pr )
0.333  

N u=0.1 (Gr Pr )
0.333

N u=0.125 (4.0354 x1011 )
0.333

;  Nu=732.42

N u=
h L
K

;                                                  732.42=
hx 0.5

0.63965
;

h=936.95w /m2K

A=πDL=π∗0.05∗0.5 ;    A=0.0785m2    

Q=hA (T w−T ∞ ) ;   Q=936.95∗0.0785∗(80−20 )   ;     Q=4415.29watts

7.  A steam pipe 5 cm in diameter is lagged with insulating material of 2.5cm
thick.The  surface  temperature  is  80 oC  and  emissivity  of  the  insulating
material  surface  is  0.93.Find  the  total  heat  loss  from 10m length  of  pipe
considering  the  heat  loss  by  natural  convection  and  radiation.  The
temperature of the air surrounding  20 oC . Also find overall  heat transfer
coefficient  4b,08 June/July 2015, (10 , 8b, June/July 18 15 scheme)

Please not that outer Diameter of Cylinder = Inner Dia +2 thickness

D=5+ (2 x2.5 )=10cm=0.1m

β=
1

T f+273

T f=
T w+T ∞

2
;    T f=

80+20
2

=500C                    D=d+2t=5+(2x2.5)

β=
1

50+273
=

1
323

D

L

Wate
r



Properties of air at 500C  Page 33                                                          T w=80oC

T ∞ =200C

γ=17.95 x10−6   Pr=0.698;  K=0.02896W /mK

Considering is Steam pipe is Horizontal

Gr=
βg∆θ D3

γ2

Gr=
1 x9.81 (80−20 ) 0.13

323 x (17.95 x 10−6 )
2 ;    Gr=5.655 x 106

Gr Pr=5.655 x106 x 0.698 ;          Gr Pr=3.947 x 106  

Horizontal cylinder
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N u=C (GrP r )
m  and C=0.48,m=0.25 for 104

<Gr Pr>107

N u=0.48 (3.947 x 106 )
0.25

N u=0.48 (4.0354 x108 )
0.25

;  N u=21.4

N u=
hD
K

;                                                  21.4=
hx 0.1

0.02896
;

h=6.046w /m2K

A=πDL=π∗0.1∗1 ;    A=0.3141m2    

Q=hA (T w−T ∞ ) ;   Q=6.046∗0.3141∗(80−20 )   ;     Q=1139.72 Watts

Heat transfer by radiation

Qrad= σAϵ (Tw
4
−T ∞

4 )

T w=80oC+273=353K

T ∞=20oC+273=293K

Qrad=0.93 x5.65 x10−8 x 0.3141 (3534
−2934 )

Qrad=1351.34Watts



Total Heat Transfer Q=QConv+Qrad

Q=1139.72+1351.34=2491.06Watts

Overall Heat Transfer Coefficient ¿
Q

A (T w−T ∞ )

U=
2491.06

0.3141 x (80−20 )
=132.18W /m2K

8. Two horizontal steam pipes having 100 mm and 300 mm are so  laid in
a boiler house that the mutual heat transfer may be neglected. The surface
temperature of each of the steam pipe is 475 oC. If the temperature of the
ambient air is 35 oC, calculate the ratio of heat transfer coefficients and heat
losses per metre length of the pipes(04, 4c, Dec14/Jan15



MODULE 5

Heat Exchanger

Heat Exchanger is the device which facilitate heat transfer between two or more 
fluids at different temperatures

Classification of Heat exchanger:

1. Nature of Heat Exchange process
a) Direct   b) Indirect type ----- i) Regenerator ii) Recuperator

In Regenerator hot and cold fluid pass alternatively through a space containing 
solid particles (matrix) which provides alternatively provide sink and source for 
heat flow examples IC Engines gas turbines

In Recuperator heat transfer takes place between hot and cold fluid through a 
dividing wall between the hot and cold fluid flow example : Automobile Radiator ,
economizer, eavaportor, condenser etc

2. Relative direction of fluid motion:  
a) Parallel flow Heat exchanger in which cold and hot fluid flows in the 

same direction
b) Counter flow Heat exchanger in which cold and hot fluid flows in the 

opposite direction
c) Cross flow Heat exchanger in which hot and cold fluids cross each other

in right angles
3. Design and constructional features:

a) Concentric tube Heat exchanger b) Shell and tube c) Multiple shell and 
tube passesd) Compact Heat exchanger

4. Physical state of fluids : 
i) Condenser in which hot fluid is condensed which releases latent 

heat of vaporization and heats cold fluid
ii) Evaporator in which cold fluid  evaporates as the hot fluid transfer 

the heat to cold fluid

Log Mean Temperature of Heat Exchanger (LMTD): 

It is defined as the temperature difference which, if constant , would give the 
same heat transfer as actually occurs under variable conditions of temperature 
difference

LMTD =

[θ i−θo ]

ln
θ i

θo

θi∧θo  are the temperature difference between hot and cold fluid at inlet and 
outlet of Heat exchanger

LMTD for Parallel flow Heat Exchanger 

Dr Abdul Sharief  PACE Page 1



θi=T hi−T ci∧θo=T ho−T co

For Counter flow Heat Exchanger 

θi=T hi−T c 0∧θo=T ho−T ci

Assumption in Derivation of LMTD and Effectiveness equation :

1. Overall Heat transfer coefficient the same

2. The flow conditions for hot and cold fluid is steady

3. Specific Heat and mass flow rate for  hot and fluid are constant

4. Heat Exchanger is completely is insulated ie there is no heat loss to 
surroundings

5. There is no phase change in either of hot and cold fluid during heat 
transfer

LMTD for Parallel flow Heat HE (Derivation)
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Consider a small element  in heat exchanger of area dA at x from one end as 
shown in fig 
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Let θ  is the temperature difference between hot and cold fluid, T h∧T c  are 
the hot and cold fluid at x respectively

Hence,                         θ=T h−Tc

Differentiating above equation

dθ=dT h−dT c

Rate of heat transfer between and cold fluid through small element in 
consideration

dQ=mcCpc (+dT c)=mhC ph (−dT h )=UdAθ

Where mh∧¿  mc  are the mass flow rate of hot and cold fluid in heat 

exchanger Cpc∧C pc are the specific heat of hot and cold fluid respectively , U is
the overall heat transfer coefficient

dT c=
UdAθ
mcCpc

; dT h=
−UdAθ
mhC ph

dθ=
−UdAθ
mhC ph

−
UdAθ
mcC pc

dθ=−UdAθ ( 1
mhC ph

+
1

mcC pc
)

Rate of heat transfer between cold fluid
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Q=mcCpc (T c 0−T ci ) = mhC ph (T hi−T h0 )

Where T hi∧Th0  are inlet and outlet temperature respectively, T ci∧¿  T c0

are inlet and outlet temperature respectively

mcC pc=
Q

(T c 0−T ci )
; mhC ph=

Q

(Thi−Th0 )

dθ=−UdAθ ( (T hi−T h0 )
Q

+
(T c0−Tci )

Q )
dθ
θ

=
−UdA
Q

(Thi−T h0+T c 0−T ci )

dθ
θ

=
−UdA
Q [ (T hi−Tci )−(T h0−T c 0 ) ]

dθ
θ

=
−UdA
Q

[θ i−θo ]

Integrating above equation from inlet to outlet

dθ
θ

=¿−
U
Q

[θi−θo ]∫
0

A

dA

∫
θi

θo

¿

ln
θo

θi

 ¿−
U
Q

[θi−θo ] A

ln
θi
θo

 ¿+
U
Q

[θi−θo ] A

Q  
¿UA

[θi−θo ]

ln
θi

θo

Q  ¿UALMTD

Where LMTD =

[θ i−θo ]

ln
θ i

θo

LMTD for Counter flow Heat Exchanger
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Consider a small element in heat exchanger of area dA at x from one end as 
shown in fig 

Let θ  is the temperature difference between hot and cold fluid, T h∧T c  are 
the hot and cold fluid at x respectively, Hence

θ=T h−Tc

dθ=dT h−dT c

Rate of heat transfer between and cold fluid through small element in 
consideration

dQ=mcCpc (−dT c )=mhC ph (−dT h )=UdAθ

Where mh∧¿  mc  are the mass flow rate of hot and cold fluid in heat 

exchanger Cpc∧C pc are the specific heat of hot and cold fluid respectively , U is
the overall heat transfer coefficient
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dT c=
−UdAθ
mcC pc

; dT h=
−UdAθ
mhC ph

dθ=
−UdAθ
mhC ph

−(−UdAθ
mcC pc

)

dθ=
−UdAθ
mhC ph

+( UdAθmcC pc
)

dθ=−(UdAθmhC ph

−
UdAθ
mcC pc

)

dθ=−UdAθ ( 1
mhC ph

−
1

mcC pc
)

Rate of heat transfer between the cold fluid and hot fluid 

Q=mcCpc (T c 0−T ci ) = mhC ph (T hi−T h0 )

Where T hi∧Th0  are inlet and outlet temperature respectively, T ci∧¿  T c0

are inlet and outlet temperature respectively

mcC pc=
Q

(T c 0−T ci )
; mhC ph=

Q

(Thi−Th0 )

dθ=−UdAθ ( (T hi−T h0 )
Q

−
(T c 0−T ci )

Q )
dθ
θ

=
−UdA
Q

(Thi−T h0−T c 0+T ci )

dθ
θ

=
−UdA
Q [ (T hi−Tco )−(T h0−T ci ) ]

For Counter flow HE θi=T hi−T co  and θo=Th0−Tci

dθ
θ

=
−UdA
Q

[θ i−θo ]

dθ
θ

=¿−
U
Q

[θi−θo ]∫
0

A

dA

∫
θi

θo

¿

ln
θo

θi
 ¿−

U
Q

[θi−θo ] A
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ln
θi
θo

 ¿+
U
Q

[θi−θo ] A

Q  
¿UA

[θi−θo ]

ln
θi

θo

Q  ¿UALMTD

Where 
LMTD=

[θi−θo ]

ln
θi
θo

Correction factor for Multiple pass Heat Exchanger:

Above LMTD equation is applicable for only single pass Heat Exchanger. The 
analytical treatment for Multiple pass and Cross flow Heat Exchanger is difficult. 
Such cases may be solved easily by using Correction factor as flollows

Q  ¿UAF (LMTD )Counter flow where F is the correction factor 

Correction factor : can be determined from charts in Heat Transfer Data Hand 
Book for various tube and shell passes of Shell Tube HE and Cross flow Heat 
Exchanger by using  Capacity ratio and Temperature ratio

Capacity ratio: It is the ratio of min heat capacity to maximum heat capacity of 
two fluids which exchanges heat from hot fluid to cold fluid 

C=
Cmin

Cmax

Heat capacity is the product of mass flow rate and specific heat ie mC

Heat capacity of hot fluid Ch=¿  mhC ph

Heat capacity of hot fluid C c=¿  mcC pc

If Cc>C hthenCc=Cmax ;∧Ch=Cmin

If Cc<C hthen Ch=Cmax ;∧C c=Cmin

Temperature Ratio

Is defined as the ratio of temperature difference between rise in  cold fluid to 
difference between the inlet temperatures of hot and cold fluids in Heat 
Exchanger 

P=
T hi−Tci

T hi−Tci
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Overall Heat transfer coefficient:

In Double tube heat exchanger Equivalent coefficient which replaces coefficient 
of conduction through separating wall and convection heat transfer coefficient , 
Equivalence heat transfer coefficient is called overall heat transfer coefficient 

For clean surface of separating wall 

Totalresistance=
1

hi2π r iL
+

ln
ro
ri

2πLK
+

1
ho2π r oL

Q=
(T i−To)

1
hi2 πr iL

+

ln
r o
r i

2πLK
+

1
ho2π ro L

Also Q=U o2 πr oL(T i−T o)  in terms of Overall heat transfer coefficient

Equating both we get

U o=
1

1
hi

ro
r i

+
ro
K

ln
r o
ri

+
1
ho

Fouling Factor:   In a Heat Exchanger, in normal operation, the tube surface is 
covered by deposition of dirt soot and scale etc. The phenomenon of scale and 
dirt deposit is called fouling . The heat transfer coefficient due to deposit is called
fouling factor. Fouling factor due inside tube is  called Inner Fouling factor , due 
to outside deposition is called outside fouling factor. Fouling factor lower the 
performance of Heat exchanger

Fouling factor can be determined by finding overall heat transfer coefficient for 
cleaned surface and un cleaned surface 

Rf=
I

UUncleaned

−
I

U cleaned

Effects of fouling

Energy losses due to thermal inefficiencies

Energy losses due to thermal inefficiencies

Costs associates for periodic cleaning the surface of Heat exchanger

Hence overall Heat transfer coefficient  with dirty tube surface
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U o=
1

1
hi

ro
r i

+
r o

r i
Rfi+

ro
K

ln
ro
ri

+R fi+
1
ho

ε=
C c (Tco−T ci )
Cmin (T hi−T ci )

=
Ch (Thi−T ho )
Cmin (Thi−T ci )

Effectiveness   ε   : 

is defined as the actual Heat transfer rate to maximum possible heat transfer

ε=
C c (Tco−T ci )
Cmin (T hi−T ci )

=
Ch (Thi−T ho )
Cmin (Thi−T ci )

Greater the effectiveness of heat exchanger greater the performance of heat 
exchanger

Number of transfer Units(NTU):

It is defined as the ratio of heat capacity of heat exchanger to heat capacity of 
flow

NTU=
UA
Cmin

For specified value of 
U
Cmin

 the NTU is measure of Area or physical size of Heat 

exchanger. The higher the value of NTU, the larger the physical size and also 
higher the effectiveness of Heat Exchanger.

For counter flow Heat Exchanger,  for the specified NTU and capacity ratio, the 
effectiveness of heat exchanger is effectiveness of Heat exchanger more 
compared to other flow arrangements in Heat exchanger

Effectiveness of Parallel flow Heat Exchanger

Consider a small element  in heat exchanger of area dA at x from one end as 
shown in fig 

Let θ  is the temperature difference between hot and cold fluid, T h∧T c  are 
the hot and cold fluid at x respectively, Hence

θ=T h−Tc

dθ=dT h−dT c

Rate of heat transfer between and cold fluid through small element in 
consideration

dQ=mcCpc (+dT c)=mhC ph (−dT h )=UdAθ
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Where mh∧¿  mc  are the mass flow rate of hot and cold fluid in heat 

exchanger Cpc∧C pc are the specific heat of hot and cold fluid respectively , U is
the overall heat transfer coefficient

dT c=
UdAθ
mcCpc

; dT h=
−UdAθ
mhC ph

dθ=
−UdAθ
mhC ph

−
UdAθ
mcC pc

dθ=−UdAθ ( 1
mhC ph

+
1

mcC pc
)

dθ
θ

= −UdA ( 1
mhCph

+
1

mcC pc
)  dA

Thi−¿T ci

T ho−¿ Tc 0

dθ
θ

∫
¿

¿

= −U ( 1
mhC ph

+
1

mcCpc
)∫

0

A

dA   where   
hi∧¿
T ¿

 T ho  are the 

temperature of hot fluid at inlet and outlet respectively and 
ci∧¿
T¿

 T co  are 

the temperature of hot fluid at inlet and outlet respectively

T ho−¿ Tc 0
=−U ( 1

mhC ph

+
1

mcC pc
)A

Thi−¿T ci

¿

(lnθ )¿

T hi−¿T ci

T ho−¿T c0

¿
ln ¿

 ¿−UA ( 1
C h

+
1
C c

)  where  Ch=mhC ph  and C c=mcCpc

T hi−¿ Tci
=e

−UA( 1
Ch

+
1
Cc

)

T ho−¿T c0

¿
¿

Q=mcCpc (T co−T ci )=mhCph (Thi−Tho )

ε=
C c (Tco−T ci )
Cmin (T hi−T ci )

=
Ch (Thi−T ho )
Cmin (Thi−T ci )

εCmin (T hi−T ci )
Cc

=(T co−Tci )
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T co=T ci+
εCmin (T hi−T ci )

C c

εCmin (T hi−T ci )
Ch

=(T hi−T ho )

T ho=Thi−
εCmin (T hi−Tci )

Ch

T hi−¿ Tci
=e

−UA( 1
Ch

+
1
Cc

)

T ho−¿T c0

¿
¿

T hi−¿T ci
=e

−UA( 1
Ch

+
1
Cc

)

(T hi−
εCmin (T hi−T ci )

Ch
)−(T ci+

εCmin (T hi−T ci )
C c

)
¿

T hi−¿ Tci
=e

−UA( 1
Ch

+
1
Cc

)

(Thi−T ci )−εCmin (Thi−T ci )( 1
Ch

+
1
C c

)
¿

T hi−¿T ci
=e

−UA ( 1
Ch

+
1
Cc

)

(Thi−T ci )(1−εC min( 1
Ch

+
1
C c

))
¿

1−εCmin( 1
Ch

+
1
Cc

)=e
−UA ( 1

Ch

+
1
C c

)

1−e
−UA ( 1

Ch

+
1
Cc

)
=εCmin( 1

Ch

+
1
C c

)

ε=
1−e

−UA ( 1
Ch

+
1
Cc

)

Cmin( 1
Ch

+
1
C c

)
If Cc>C hthenCc=Cmax ;∧Ch=Cmin and hence
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ε=
1−e

−UA( 1
Cmin

+
1

Cmax
)

Cmin( 1
Cmin

+
1

Cmax
)

ε=
1−e

−UA
Cmin (1+ Cmin

C max)

1+
Cmin

Cmax

ε=
1−e−NTU (1+C )

1+C

If Cc<C hthen Ch=Cmax ;∧C c=Cmin and hence

ε=
1−e

−UA( 1
Cmax

+
1

Cmin
)

Cmin( 1
Cmax

+
1

Cmin
)

ε=
1−e

−UA
Cmin ( Cmin

Cmax
+1)

Cmin

Cmax

+1

ε=
1−e−NTU (C+1 )

C+1

Effectiveness of Counter flow Heat exchanger

Consider a small element  in heat exchanger of area dA at x from one end as 
shown in fig 

Let θ  is the temperature difference between hot and cold fluid, T h∧T c  are 
the hot and cold fluid at x respectively, Hence

Consider a small element in heat exchanger

θ=T h−Tc

dθ=dT h−dT c

Rate of heat transfer between and cold fluid through small element in 
consideration

dQ=mcCpc (−dTc )=mhC ph (−dT h )=UdAθ
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Where mh∧¿  mc  are the mass flow rate of hot and cold fluid in heat 

exchanger Cpc∧C pc are the specific heat of hot and cold fluid respectively , U is
the overall heat transfer coefficient

dT c=
−UdAθ
mcC pc

; dT h=
−UdAθ
mhC ph

dθ=
−UdAθ
mhC ph

+
UdAθ
mcC pc

dθ=−UdAθ ( 1
mhC ph

−
1

mcC pc
)

dθ
θ

= −UdA ( 1
mhCph

−
1

mcC pc
)  dA

T hi−¿T c0

T ho−¿ Tci

dθ
θ

∫
¿

¿

= −U ( 1
mhC ph

−
1

mcC pc
)∫

0

A

dA

hi∧¿
where T¿

 T ho  are the temperature of hot fluid at inlet and outlet respectively 

and 
ci∧¿
T¿

 T co  are the temperature of hot fluid at inlet and outlet 

respectively

T ho−¿ Tci
=−U ( 1

mhC ph

−
1

mcC pc
) A

Thi−¿T c0

¿

(lnθ )¿

T hi−¿T c0

T ho−¿T ci

¿
ln ¿

 ¿−UA ( 1
C h

−
1
Cc

)

T hi−¿ Tc0
=e

−UA( 1
Ch

−
1
Cc

)

T ho−¿T ci

¿
¿

Q=mcCpc (T co−T ci )=mhCph (Thi−Tho )

ε=
C c (Tco−T ci )
Cmin (T hi−T ci )

=
Ch (Thi−T ho )
Cmin (Thi−T ci )
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εCmin (T hi−T ci )
Cc

=(T co−Tci )

T co=T ci+
εCmin (T hi−T ci )

C c

εCmin (T hi−T ci )
Ch

=(T hi−T ho )

T ho=Thi−
εCmin (T hi−Tci )

Ch

T hi−¿ Tc0
=e

−UA( 1
Ch

−
1
Cc

)

T ho−¿T ci

¿
¿

(T hi−
εCmin (T hi−T ci )

Ch
)−Tci

Thi−(T ci+
εCmin (T hi−T ci )

Cc
)
=e

−UA ( 1
Ch

−
1
Cc

)

(T hi−T ci )−
εCmin (Thi−Tci )

Ch

(Thi−T ci )−( εCmin (Thi−Tci )
C c

)
=e

−UA( 1
Ch

−
1
Cc )

(Thi−T ci )(1− εCmin

Ch
)

(Thi−T ci )(1− εCmin

CC
)
=e

−UA( 1
Ch

−
1
Cc )

(1− εCmin

Ch
)

(1− εCmin

CC
)
=e

−UA ( 1
Ch

−
1
Cc )

(1− εCmin

Ch
)=(1− εCmin

CC
)e

−UA( 1
Ch

−
1
Cc

)

1−
εCmin

C h

=e
−UA( 1

Ch

−
1
Cc

)
−
εCmin

CC

e
−UA ( 1

Ch

−
1
Cc

)
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1−e
−UA ( 1

Ch

−
1
C c

)
=
εCmin

Ch

−
εCmin

CC

e
−UA ( 1

Ch

−
1
Cc

)

1−e
−UA ( 1

Ch

−
1
C c )

=εCmin( 1
Ch

−
1
CC

e
−UA( 1

Ch

−
1
Cc ))

1−e
−UA( 1

Ch

−
1
Cc

)

Cmin( 1
Ch

−
1
CC

e
−UA ( 1

Ch

−
1
Cc ))

=ε

If Cc<C hthenCh=Cmax ;∧C c=Cmin and hence

ε=
1−e

−UA ( 1
Cmax

−
1

Cmin
)

Cmin( 1
Cmax

−
1

Cmin

e
−UA ( 1

Cmax

−
1

Cmin ))

ε=
1−e

−UA ( 1
Cmax

−
1

Cmin
)

Cmin( 1
Cmax

−
1

Cmin

e
−UA ( 1

Cmax

−
1

Cmin ))

ε=
1−e

−UA
Cmin ( Cmin

Cmax
−1)

( Cmin

Cmax

−e
−UA
Cmin ( Cmin

Cmax

−1))
ε=

1−e−NTU (C−1)

C−e−NTU (C−1)

ε=

1−e−NTU (C−1 )

e−NTU (C−1)

C−e−NTU (C−1 )

e−NTU (C−1)

ε=

1−e−NTU (C−1 )

e−NTU (C−1)

C−e−NTU (C−1 )

e−NTU (C−1)

ε=
e−NTU (1−C )

−1

C e−NTU ( 1−C )
−1
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ε=
1−e−NTU ( 1−C )

1−Ce−NTU (1−C )

For Condensers and evaporators C=0 as Cmax =∞

ε=1−e−NTU (1−C )

Regenerators C=0

ε=
1−e−NTU

1−Ce−NTU

NTU Method: 

By Using Non Dimensional number ie NTU and C( Capacity ratio) effectiveness 
can be determined from equation of effectiveness in terms of NTU and C .From 
definition of Effectiveness Outlet temperatures can be found out . This is called 
NTU method. This method is more useful when outlet temperatures fluids are  
Unknown 

NTU Method Calculation is given below steps

1. Calculate  heat capacities of hot and cold fluid using  C c=mcCpc  and

Ch=mcC ph

 If Cc<Chthen Ch=Cmax ;∧C c=Cmin

If Ch<CC then Ch=Cmin;∧C c=Cmax

¿calcualte Capcity ratio  C=
Cmin

Cmax

2. Calculate NTU ¿
UA
Cmin

 

3. Using C and NTU determine effectiveness of heat exchanger either using 
equation in terms C and NTU or plot NTU verses C 

4. Determine the unknown temperatures of hot and cold fluids using 
equation of heat exchanger in terms of temperatures

5. Calculate Q using Q=mcCpc (T c 0−T ci ) = mhC ph (T hi−T h0 )

Boiling

Boiling Types: When evaporation occurs at a solid-liquid interface, it is 
called as “boiling”. The boiling process occurs when the temperature of 
the surface Tw exceeds the saturation temperature Tsat corresponding to 
the liquid pressure. Heat is transferred from the solid surface to the liquid, 
and the appropriate form of Newton’s law of cooling is

                                                qw = h [Tw – Tsat] = h ∆Te 
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Where ∆Te = [Tw - Tsat] and is termed as the “excess temperature”. 

Applications

1. Steam production (Power Plants, Space heating etc)
2. Heat absorption in refrigeration and Air conditioning systems
3. Distillation and Refining of liquids
4. Drying food materials
5. Cooling the machines liked nuclear reactors and rocket motors

The boiling process is characterized by the formation of vapour bubbles 
which grow and subsequently detach from the surface. Vapour bubble 
growth and dynamics depend, in a complicated manner, on the excess 
temperature ∆Te, the nature of the surface, and the thermo-physical 
properties of the fluid, such as its surface tension. In turn the dynamics of 
vapour bubble growth affect fluid motion near the surface and therefore 
strongly influence the heat transfer coefficient.

Classification  Boiling Process 

1. Pool Boiling 2.  Forced Convection boiling  3. Sub-cooled 
Boiling (Local Boiling) 

4. Saturated Boiling

Pool Boiling

 If the liquid is quiescent and if its motion near the surface is due to free 
convection and due to mixing induced by bubble growth and detachment, 
then such a boiling process is called “pool boiling”. 

Forced Convection Boiling

In “forced convection boiling”, the fluid motion is induced by an external 
means as well as by free convection and bubble induced mixing 

 Boiling may also be classified as “sub-cooled boiling(Local Boiling) ” and 
“saturated boiling”. 

Sub-cooled boiling(Local Boiling) 

In sub-cooled boiling, the temperature of the liquid is below the saturation
temperature and the bubbles formed at the surface may condense in the 
liquid.

Saturated Boiling
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In saturated boiling, the temperature of the liquid slightly exceeds the 
saturation temperature. Bubbles formed at the surface are then propelled 
through the liquid by buoyancy forces, eventually escaping from a free 
surface.

Pool Boiling Regimes: The first investigator who established 
experimentally the different regimes of pool boiling was Nukiyama. He 
immersed an electric resistance wire into a body of saturated water and 
initiated boiling on the surface of  the wire by passing electric current 
through it. He determined the heat flux as well as the temperature from 
the measurements of current and voltage. 

Figure   shows  characteristics of pool boiling for water at atmospheric 
pressure. This boiling curve illustrates the variation of heat flux or the 
heat transfer coefficient as a function of excess temperature ∆Te. This 
curve pertains to water at 1 atm pressure.From Eq.  (8.27) it can seen that

qw depends on the heat transfer coefficient h and the excess temperature 
∆Te.
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Free Convection Regime(point 0 to point A):- Free convection is said 
to exist if  ∆Te ≤ 5 0 C. Heat transfer from the heated surface causes the 
liquid in the vicinity of the surface to be superheated . The superheated 
liquid raises to the free surface by natural convection where vapor 
produced by the evaporation

Nucleate Boiling Regime(Between points Aand B):- Nucleate boiling
exists in the range 5 0 C ≤ ∆Te ≤ 30 0 C. In this range, two different flow
regimes may be distinguished. In the region A-B, very few bubbles are
formed . These bubbles grow and get detached and rises to free surface In
this regime most of the heat exchange is through direct transfer from the
surface to liquid in motion at the surface, and not through vapour bubbles
rising from the surface.

 As  ∆Te is  increased  beyond  10  0C  (Region  B-C),  the  rate  of  bubble
formation and number of  location where bubble formed increases  and
the bubble generation rate is so high that continuous columns of vapour
appear. As a result very high heat fluxes are obtainable in this region. In
practical  applications,  the  nucleate  boiling  regime  is  most  desirable,
because  large  heat  fluxes  are  obtainable  with  small  temperature
differences. In the nucleate boiling regime, the heat increases rapidly with
increasing excess temperature  ∆Te until the peak heat flux is reached.
The  location  of  this  peak  heat  flux  is  called  the  burnout  point, or
departure from nucleate boiling (DNB), or the critical heat flux (CHF). The
reason for calling the critical heat flux the burnout point is apparent from

Dr Abdul Sharief  PACE Page 20



the Fig. 8.4. Such high values of ∆Te may cause the burning up or melting
away of the heating element.

Film Boiling Regime:- It can be seen from Fig. that after the peak heat 
flux is reached, any further increase in ∆Te results in a reduction in heat 
flux. The reason for this curious phenomenon  is the blanketing of the 
heating surface with a vapour film which restricts liquid flow to the surface
and has a low thermal conductivity. This regime is called the film boiling 
regime. 

The film boiling regime can be separated into three distinct regions 
namely (i)  the unstable film boiling region, C-D (ii) the stable film boiling 
region and (iii) radiation dominating region. 

In the unstable film boiling region, the vapour film is unstable, collapsing 
and reforming under the influence of convective currents and the surface 
tension. Here the heat flux decreases as the surface temperature 
increases, because the average wetted area of the heater surface 
decreases.

 In the stable film boiling region, the heat flux drops to a minimum, 
because a continuous vapour film covers the heater surface.In the 
radiation dominating region, the heat flux begins to increase as the excess
temperature increases, because the temperature at the heater surface is 
sufficiently high for thermal radiation effects to augment heat transfer 
through the vapour film.

Condensation:

Condensation occurs whenever a vapour comes into contact with a 
surface at a temperature lower than the saturation temperature of the 
vapour corresponding to its vapour pressure. 

There are 2 types of condensation

i) Filmwise Condensation  ii) Dropwise Condensation

If the liquid thus formed due to condensation wets the solid surface and 
the condensate flows on the surface in the form of a film and this type of 
condensation  is called “film-wise condensation”. 

If the liquid thus formed due to condensation wets the solid surface and , 
the condensate collects in the form of droplets, which either grow in size 
or combine  with neighboring droplets and eventually roll on the surface 
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under the influence of gravity. This type of condensation is called “drop-
wise condensation”.

During the condensation if traces of oil are present on highly polished 
surface, the film of condensation is broken into droplets and condensation 
takes place in the form of drops 

Difference between Filmwise condensation and Dropwise 
condensation

1 During condensation a thin 
continuous film of liquid is 
formed. Film of liquid formed falls 
down due to gravity

A film is broken into droplets of 
liquid and fall down the surface in
random fashion

2 It wets the surface Does not wet the surface
3 Surface does not directly exposed

to surface since film of 
condensate is formed between 
the surface and vapor

Larger area of condensing surface
is exposed to vapor

4 Heat transfer rate is less as film of
liquid formed gives thermal 
resistance for heat flow

Heat transfer rate is 5 to 10 times
greater compared to filmwise 
condensation

5 Dropwise condensation is 
preferred to filmwise condesation

Laminar Film Condensation on vertical plate

Assumptions

1. The plate is maintained at a uniform temperature T w  is less than 
saturation temperature of the vapor

2. The film of liquid formed flows under the action of gravity only.
3. The condensate flow is laminar and fluid properties are constant
4. Heat transfer across the the condensate layer only due to pure 

conduction
5. Viscous shear and gravitational forces are assumed to be act on the 

fluid . Normal viscous forces and inertia forces are neglected
6. The shear stress at the liquid –vapor interface is negligible
7. Condensing vapor is entirely clean and free from gases , air and 

condensing impurities 
8. The liquid film is in good thermal contact with the cooling surface

Consider a small element of thickness dx  and breadth (δ− y ) and unit 
width as shown in figure

1. A metal clad heating element of 10 mm diameter and of emissivity 0.92 is
submerged in water bath horizontally. If  the surface temperature of the
plate  is  260  oC  under  study  boiling  conditions,  calculate  the  power
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dissipation  per  unit  length  of   the  heater.  Assume  that  the  water  is
exposed  to  atmospheric  pressure  and  is  at  uniform  temperature
(7c,10,Dec14/Jan16)

1.  Discuss modes of condensation (7a, 04, Dec17/Jan18)
2.  Explain the influence of non- condensable gases in condensation process

(7a,04,June/July15)
3. Explain filmwise and dropwise condensation (7a,04,June/July14)
4.  Differentiate  between  the  mechanism  of  filmwise  and  dropwise

condensation.  Explain  Why  dropwise  condensation  is  preferred  over
filmwise condensation (7b,06,June/July15)

1. A vertical Square Plate 30 cm x 30 cm is exposed to steam at atmospheric
pressure. The  plate temperature is 98 oC. Calculate the heat transfer and
mass of steam condensed per hour (7c, 07,June/July18) 

Solution 
At atmospheric pressure
Tsat=100oC  
Tv=Tsat=100oC

At saturaturation temperature=1000C ,h fg=2256.9 kJ /kg ie hfg=2256.9 x 103 J /kg

Plate temperature = 98oC ie Ts=98oC

T f=
T V+T s

2
  ie T f=

100+98
2

=99oC

At 99oC  Refer water properties 

ρ=974+
961−974
100−80

( 99−80 )=961.65 kg /m3

γ=[0.364+
0.293−0.364

100−80
(99−80 )] x10−6=0.36045 x10−6

             30cm

μl=ρ γ  ie μl=961.65 x 0.36045 x 10−6
=3.466 x 10−4

k=0.6687+
0.6804−0.6687

100−80
( 99−80 )=

0.6715W
mK

Heat transfer coefficient for vertical plate from data hand book 30cm

h=0.943[ k3ρ2 ghfg
μl L (TV−T s ) ]

0.25

L=vertical hieght for vertical plate ie L=0.3m

h=0.943[0.6715
3 x 961.652 x 9.81 x 2256.9 x 103

3.466 x10−4 x 0.3 (100−98 ) ]
0.25

h=12390.96W /m2 K
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Rate of heat transfer 
Q=hA (TV−T s )
Q=12390.96 x ( 0.3x 0.3 ) x (100−98 )

Q=2230.37 Watts
Mass of steam condensed 

´
ḿ=

Q
hfg

  ḿ=
2256.9 x 103

2230.37
kg/s

2. A vertical Square Plate 300 m x 300m is exposed to steam at atmospheric
pressure. The plate temperature is 98oC. Calculate the heat transfer and
the mass of steam condenser per hour (10b, 08,Dec18/Jan19,15 scheme)

3.  Steam at 0.065bar condenses on a vertical plate of 0.6 m square. If the
surface temperature of the plate is maintained at 15  oC , estimate the rate
of condensation, Ts = 37.7 oC , hfg=2412 x 103 J/ kg  
The properties of water at mean temperature 26.4 oC are listed below 
ρ=¿ 1000  kg/m3,   K=0.913W/mK,   μ  =864  x  10-6 kg/ms  (7c,  10,

june/July2017)

4. A  vertical  plate  500 mm high  and maintained  at  30  oC is  exposed to
saturated steam at atmospheric pressure. Calculate the following i) rate of
heat transfer ii)  condensate rate /  hour /  m width of the plate for film
condensation
Properties  of  water  at  mean  film  temperature  are  ρ=¿ 980.3  kg/m3,
K=66.4x10-2W/moC,  μ  =434 x 10-6 kg/ms and  hfg=2257 k J/kg. Assume
vapour  density  is  small  compared  to  that  of  condensate  (7c,07,
Dec18/Jan19)
(hint: Area A=0.5x1=0.5m2, L=height 500mm =0.5m)

5.  Dry saturated steam at  atmospheric  pressure condenses on a vertical
tube of diameter 5 cm and length 1.5 m. If the surface is maintained at 80
oC, determine heat transfer rate and the mass of steam condenser per hr
(7c,08,June/July2013)

At atmospheric pressure
Tsat=100oC  
Tv=Tsat=100oC

At saturaturation temperature=1000C ,h fg=2256.9 kJ /kg ie hfg=2256.9 x 103 J /kg

Plate  temperature  =  98oC  ie  Ts=98oC
D=5cm

T f=
T V+T s

2
  ie T f=

100+80
2

=90oC

At 90oC  Refer water properties 
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ρ=974+
961−974
100−80

( 90−80 )=961.65 kg /m3
                                  Tv=100oC

 
L=1.5m

γ=[0.364+
0.293−0.364

100−80
(90−80 )] x 10−6=0.36045 x10−6

μl=ρ γ  ie μl=961.65 x 0.36045 x 10−6
=3.466 x 10−4

k=0.6687+
0.6804−0.6687

100−80
( 90−80 )=

0.6715W
mK

                                    Ts=80oC

Heat transfer coefficient for vertical plate from data hand book

h=0.943[ k3ρ2 ghfg
μl L (TV−T s ) ]

0.25

L=vertical hieght for vertical plate ie L=0.3m                                      

h=0.943[0.6715
3 x 961.652 x 9.81 x 2256.9 x 103

3.466 x10−4 x 0.3 (100−98 ) ]
0.25

h=12390.96W /m2 K
Rate of heat transfer 
Q=hA (TV−T s )
Q=12390.96 x ( 0.3x 0.3 ) x (100−98 )

Q=2230.37 Watts
Mass of steam condensed 

´
ḿ=

Q
hfg

  ḿ=
2256.9 x 103

2230.37
kg/s

6.  Dry  saturated steam at a pressure of 2.0 bar condenses on the surface of
vertical tube of height 1 m. The tube surface is kept at 117  oC. Estimate
the thickness of  the condensate film and heat transfer coefficient at  a
distance of 0.2 m from the upper end of the tube. Assume the condensate
film to be laminar. Also calculate the average heat transfer coefficient over
the entire length of the tube (10c , 08, June/July18,15 scheme)

7. A vertical tube (Taking experimental value) of  60 mm OD and 1.2 mtr long
is exposed to steam at atmospheric pressure. The outer surface of  the
tube is  maintained at  a  temperature  of  50oC by  circulating cold  water
through the tubes. Calculate i) rate of heat transfer to the coolant  ii) the
rate of condensation of steam. Assuming the condensation film is laminar

and TPP of water at 75 oC are ρL=¿ 975kg/m3 μL=3 75 x 10-6 Ns/m2 K=

0.67W/moC. The properties of saturated vapour  tsat=100 oC ρv=¿ 0.596
kg/m3,  hfg=2257 k J/kg. (7c, 08,Dec15/jan16)
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D=60mm

h=0.943[ k3ρ2 ghfg
μl L (TV−T s ) ]

0.25

L=vertical hieght for verticalCylinder ie L=1.2m
hfg=¿ 2257 k J/kg ¿2257 x103 J /kg

TV=T sat=100oC                                                                   TV=T sat

100oC

h=0.943[0.67
3 x 9752 x 9.81 x2257 x103

375 x 10−6 x 1.2 (100−50 ) ]
0.25

DDDD       L=1.2m

h=3862.1W /m2 K                                                                               T s=50oC
Rate of heat transfer 
Q=hA (TV−T s )
Q=3862.1 x (πx0.06 x 1.2 ) x (100−98 )

Q= 43.679 x103 Watts
Mass of steam condensed 

´
ḿ=

Q
hfg

  ḿ=
43.679 x103

2257 x103 kg/s

ḿ=0.01935 kg /s

8.  Saturated steam at 90oC and 70 kPa is condensed on outer surface of a
1.5  m  long  2.5  m  diameter  vertical  tube  maintained  at  uniform
temperature of 70  oC .Assuming  film wise condensation,  calculate the
heat transfer rate on the tube surfaces (7b, 08, Dec17/Jan18)

(Tsat=90oC,  T f=
T V+T s

2
  ie  T f=

90+70
2

=800C  Take properties of water at

80oC for k, ρ ,μ
Take  hfg for either 90oC  or  70  kPa=0.7  bar  from  steam  table)  L=vertical
height of cylinder=2.5m 

9.  A tube of 13 mm in outer diameter and 1.5 m long is used to condense
the steam at 40 kPa (Tsat =76 oC) .Calculate the heat transfer coefficient for
this tube in a) horizontal position b) vertical position.Ttake average to wall
temperature as 52 oC (7c, 08, Dec17/Jan18)
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10. A tube of 15 mm outside diameter and 1.5 m long is used for condensing
steam at 40 kPa. calculate the average heat transfer Coefficient when the
tube  is  i)  horizontal  and  ii)   vertical  and  its  surface  temperature  is
mentioned at 52 oC (7c,08,June/July15)

At 40kPa =0.4bar from steam table

Tsat=76oC  
Tv=Tsat=100oC
At saturaturation temperature=0.4 h̄fg=2319.2 kJ /kg ie hfg=2319.2 x103 J /kg

Surface temperature = 52oC ie Ts=52oC

T f=
T V+T s

2
  ie T f=

76+52
2

=64oC

At 64oC  Refer water properties 

ρ=985+
974−985
80−60

(64−60 )=982.8kg /m3

γ=[0.478+
0.364−0.478

80−60
(64−60 )] x10−6=0.4552 x10−6m2/s

μl=ρ γ  ie μl=982.8 x 0.4552 x 10−6
=4.473 x 10−4

k=0.6513+
0.6687−0.6513

80−60
(64−60 )=0.65478W /mK

Case 1: Horizontal Position
Heat transfer coefficient for Horizontal cylinder from data hand book

h=0.728[ k3 ρ2gh fg

μl D (TV−T s ) ]
0.25

D=15mm=0.015m

h=0.728[0.65478
3 x 982.82 x 9.81 x 2319.2 x 103

4.473 x10−4 x 0.015 (76−52 ) ]
0.25

TV=760C;T s=520C

h=10183.47W /m2 K                                                     D=0.015m
Rate of heat transfer 
Q=hA (TV−T s )
Q=10183.47 x (πx 0.015 x 1.5 ) x (76−52 )                                                L=1.5m

Q=¿ 17275.84Watts
Mass of steam condensed 
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´
ḿ=

Q
hfg

  

ḿ=
17275.84

2319.2 x 103 kg/s

ḿ=7.449 x10−3 kg /s

Case 2 Vertical Position
L=Hieght of the cylinder=1.5m

h=0.943[ k3ρ2 ghfg
μl L (TV−T s ) ]

0.25

L=1.5m

h=0.943[0.65478
3 x 982.82 x 9.81x 2319.2x 103

4.473 x10−4 x 1.5 (76−52 ) ]
0.25

h=4171.3W /m2K
L=1.5m
Rate of heat transfer 
Q=hA (TV−T s )
Q=4171.3 x (πx 0.015 x1.5 ) x (76−52 )

Q=¿ 7077.6 Watts
Mass of steam condensed 

´
ḿ=

Q
hfg

  

ḿ=
7077.6

2319.2 x 103 kg/s

ḿ=3.052 x10−3 kg /s

11. A 12 cm outside diameter and 2 m long tube is used in a big condenser to
condense the steam at 0.4 bar.  Estimate the unit surface conductance i)
in  vertical  position  ii)  in  horizontal  position.  Also  find  the  amount  of
condensate  formed  per  hour  in  both  the  cases.   The  saturation
temperature of the steam 74.5oC . Average wall temperature =50oC.

The  properties  of  water  film  at  average  temperature  of  
74.5+50

2
=62.7oC are given below

ρ=¿ 982.2 kg/m3,  hfg=2480 k J/kg ,K=0.65W/mK,  and  .  μ  =0.47 x
10-3kg/ms

12. Air free saturated steam at 85 oC and pressure of 57.8 KPa condenses on
the outer  surface of  225 horizontal  tubes of  1.27 cm outside diameter
arranged  in  15x15 array.  Tube  surfaces  are  maintained  at  uniform
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temperature of 75 oC .Calculate the total condensation rate /metre length
of the tube bundle.
 (7c,08,June/July16)

Tsat=85oC  
Tv=Tsat=85oC

At saturaturation temperature=85C hfg=2293 kJ /kg ie hfg=2293 x 103 J /kg
Surface temperature =75oC ie Ts=75oC

T f=
T V+T s

2
  ie T f=

85+75
2

=80oC

At 80oC  Refer water properties 

ρ=974 kg /m3

γ=0.364 x 10−6m2
/ s

μl=ρ γ  ie μl=974 x0.364 x 10−6
=3.545 x10−4

k=0.6687W /mK

Heat transfer coefficient for Horizontal cylinder of multiple tubes arranged in
array from data hand book

h=0.728[ k3ρ2 ghfg
μl N D (T V−T s ) ]

0.25

where N  =  number  of  horizontal  rows  placed  one  above  the  other
(irrespective of the number of tubes in horizontal row)
Noumber of tubes225∈15 x15array ie 15 horizontal rows and in each row there

are  15  tubes  in  each  horizontal  row.  Therefore  N=15

TV=850CT s = 750C
D=1.27 cm=0.0127m                                                                     Total

Number of Tubes =225

h=0.728[ 0.66873 x 9742 x 9.81 x 2293 x 103

3.545 x10−4 x 15 x0.0127 (85−75 ) ]
0.25

                                      N=15 (no

of horizontal rows)
h=¿ 7177.52W/m2K

Rate of heat transfer 
Q=hA (TV−T s )
A=πDLxno of tubes

No of tubes =15x15=225; L =1m
Q=7177.52 x (πx0.0127 x 1x 225 ) x (85−75 )

Q=¿ 644333.17Watts
15 horizontal rows
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                                                                                                           15
tubes in each Horizontal row

                                                                                                  
Mass of steam condensed 

´
ḿ=

Q
hfg

  

ḿ=
644333.17

2293 x103 kg/s

ḿ=0.281kg /s
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