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Chapter 7

Transferred Electron
Devices (TEDs)

7-0 INTRODUCTION

The application of two-terminal semiconductor devices at microwave frequencies has
been increased usage during the past decades. The CW, average, and peak power
outputs of these devices at higher microwave frequencies are much larger than those
obtainable with the best power transistor. The common characteristic of all active
two-terminal solid-state devices is their negative resistance. The real part of their
impedance is negative over a range of frequencies. In a positive resistance the cur-
rent through the resistance and the voltage across it are in phase. The voltage drop
across a positive resistance is positive and a power of (/*R) is dissipated in the resis-
tance. In a negative resistance, however, the current and voltage are out of phase by
180°. The voltage drop across a negative resistance is negative, and a power of
(—I?R) is generated by the power supply associated with the negative resistance. In
other words, positive resistances absorb power (passive devices), whereas negative
resistances generate power (active devices). In this chapter the transferred electron
devices (TEDs) are analyzed.

The differences between microwave transistors and transferred electron devices
(TEDs) are fundamental. Transistors operate with either junctions or gates, but
TEDs are buik devices having no junctions or gates. The majority of transistors are
fabricated from elemental semiconductors, such as silicon or germanium, whereas
TEDs are fabricated from compound semiconductors, such as gallium arsenide
(GaAs), indivm phosphide (InP), or cadmium telluride (CdTe). Transistors operate
with “warm” electrons whose energy is not much greater than the thermal energy
(0.026 ¢V at room temperature) of electrons in the semiconductor, whereas TEDs
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operate with *hot” electrons whose energy is very much greater than the thermal en-
ergy. Because of these fundamental differences, the theory and technology of tran-
sistors cannot be applied to TEDs.

7-1 GUNN-EFFECT DIODES—GaAs DIODE

Gunn-effect diodes are named after J. B. Gunn, who in 1963 discovered a periodic
fluctuations of current passing through the n-type gallium arsenide (GaAs) specimen
when the applied voltage exceeded a certain critical value. Two years later, in 1965,
B. C. DeLoach, R. C. Johnston, and B. G. Cohen discovered the impact ionization
avalanche transit-time (IMPATT) mechanism in silicon, which employs the avalanch-
ing and transit-time properties of the diode to generate microwave frequencies. In
later years the limited space-charge-accumulation diode (LSA diode) and the indium
phosphide diode (InP diode) were also successfully developed. These are bulk
devices in the sense that microwave amplification and oscillation are derived from
the bulk negative-resistance property of uniform semiconductors rather than from
the junction negative-resistance property between two different semiconductors, as
in the tunnel diode.

7-1.1 Background

After inventing the transistor, Shockley suggested in 1954 that two-terminal
negative-resistance devices using semiconductors may have advantages over transis-
tors at high frequencies [1]. In 1961 Ridiey and Watkins described a new method for
obtaining negative differential mobility in semiconductors [2]. The principle in-
volved is to heat carriers in a light-mass, high-mobility subband with an electric field
s0 that the carriers can transfer to a heavy-mass, low-mobility, higher-energy sub-
band when they have a high enough temperature. Ridley and WatKins also mentioned
that Ge—Si alloys and some III-V compounds may have suitable subband structures
in the conduction bands. Their theory for achieving negative differential mobility in
bulk semiconductors by transferring electrons from high-mobility energy bands to
low-mobility energy bands was taken a step further by Hilsum in 1962 [3]. Hilsum
carefully calculated the transferred electron effect in several I[[-V compounds and
was the first to use the terms transferred electron amplifiers (TEAs) and oscillators
(TEQs). He predicted accurately that a TEA bar of semi-insulating GaAs would be
operated at 373°K at a field of 3200 V/icm. Hilsum’s attempts to verify his theory ex-
perimentally failed because the GaAs diode available to him at that time was not of
sufficiently high quality.

It was not until 1963 that J. B. Gunn of IBM discovered the so-called Gunn ef-
fect from thin disks of n-type GaAs and n-type InP specimens while studying the
noise properties of semiconductors [4]). Gunn did not connect—and even immedi-
ately rejected—his discoveries with the theories of Ridley, Watkins, and Hilsum. In
1963 Ridley predicted [5] that the field domain is continually moving down through
the crystal, disappearing at the anode and then reappearing at a favored nucleating
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center, and starting the whole cycle once more. Finally, Kroemer stated [6] that the
origin of the negative differential mobility is Ridley-Watkins—Hilsum’s mechanism
of electron transfer into the satellite valleys that occur in the conduction bands of
both the n-type GaAs and the n-type InP and that the properties of the Gunn effect
are the current oscillations caused by the periodic nucleation and disappearance of
traveling space-charge instability domains. Thus the correlation of theoretical pre-
dictions and experimental discoveries completed the theory of transferred electron

devices (TEDs).
7-1-2 Qunn Effect

A schematic diagram of a uniform n-type GaAs diode with ohmic contacts at the
end surfaces is shown in Fig. 7-1-1. J. B. Gunn observed the Gunn effect in the
n-type GaAs bulk diode in 1963, an effect best explained by Gunn himself, who
published several papers about his observations (7 to 9). He stated in his first paper
[7] that

Above some critical voltage, corresponding to an electric field of 2000-4000 volts/cm,
the current in every specimen became a fluctuating function of time. In the GaAs spec-
imens, this fluctuation took the form of a periodic oscillation superimposed upon the
pulse current. . . . The frequency of oscillation was determined mainly by the speci-
men, and not by the external circuit. . . . The period of escillation was usually in-
versely proportional to the specimen length and closely equal to the transit time of elec-
trons between the electrodes, calculated from their estimated velocity of slightly over
107 ¢cmis. . . . The peak pulse microwave power delivered by the GaAs specimens to a
matched load was measured. Value as high as 0.5 W at 1 Ge/s, and 0.15 W at 3 Gefs,
were found, corresponding to 1-2% of the pulse input power.*
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*After J. B. Gumn [7); reprodiced by permission of IBM, Inc.
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From Gunn’s observation the carrier drift velocity is linearly increased from
zero to a maximum when the electric field is varied from zero to a threshold value.
When the electric field is beyond the threshold value of 3000 Viem for the n-type
GaAs, the drift velocity is decreased and the diode exhibits negative resistance. This
situation is shown in Fig. 7-1-2.
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Figure 7-1-2 Drift velocity of electrons in a-type GaAs versus electric field.
(After J. B. Gunn [8]; reprinted by permission of IBM, Inc.)

The current fluctuations are shown in Fig. 7-1-3. The current waveform was
produced by applying a voltage pulse of 16-V amplitude and 10-ns duration to a
specimen of n-type GaAs 2.5 X 107* cm in length. The oscillation frequency was
4.5 GHz. The lower trace had 2 ns/cm in the horizontal axis and 0.23 A/cm in the
vertical axis. The upper trace was the expanded view of the lower trace. Gunn found
that the period of these oscillations was equal to the transit time of the electrons
through the specimen calculated from the threshold current.
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Figure 7-1-3 Current waveform of n-
J N type GaAs reported by Gunn. (After
J. B. Gunn [8]; reprinted by permission
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Gunn also discovered that the threshold electric field £y varied with the length
and type of material. He developed an elaborate capacitive probe for plotting the
electric field distribution within a specimen of n-type GaAs of length L = 210 um
and cross-sectional area 3.5 X 107° cm? with a low-field resistance of 16 £2. Current
instabilities occurred at specimen voltages above 59 V, which means that the
threshold field is
59

L 210 x 10°° x 10?

<

Ep = = 2810 volts/cm (7-1-1)

7-2 RIDLEY-WATKINS-HILSUM (RWH) THEORY

Many explanations have been offered for the Gunn effect. In 1964 Kroemer [6] sug-
gested that Gunn’s observations were in complete agreement with the Ridley-
Watkins—Hilsum (RWH) theory,

7-2.1 Differential Negative Resistance

The fundamental concept of the Ridley-Watkins~Hilsum (RWH) theory is the differ-
ential negative resistance developed in a bulk solid-state III-V compound when either
a voltage (or electric field) or a current is applied to the terminals of the sample.
There are two modes of negative-resistance devices: voltage-controlled and current-
controlled modes as shown in Fig. 7-2-1(a) and (b), respectively [S].
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(a) Voltage—controlled mode {b) Current-controlied mode

Figure 7-2-1 Diagram of negative resistance. (From B. K. Ridley {5]; reprinted
by permission of the Institute of Physics.)

In the voltage-controlled mode the current density can be multivalued,
whereas in the current-controlled mode the voltage can be multivalued. The major
effect of the appearance of a differential negative-resistance region in the current-
density-field curve is to render the sample electrically unstable. As a result, the ini-
tially homogeneous sample becomes electrically heterogeneous in an attempt to
reach stability. In the voltage-controlled negative-resistance mode high-field do-
mains are formed, separating two low-field regions. The interfaces separating low-
and high-field domains lie along equipotentials; thus they are in planes perpendicular
to the current direction as shown in Fig. 7-2-2(a). In the current-controlled
negative-resistance mode splitting the sample results in high-current filaments run-
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Chapter O

Introduction

The central theme of this book concerns the basic principles and applications of mi-
crowave devices and circuits. Microwave techniques have been increasingly adopted
in such diverse applications as radio astronomy, long-distance communications,
space navigation, radar systems, medical equipment, and missile electronic systems.
As a result of the accelerating rate of growth of microwave technology in research
and industry, students who are preparing themselves for, and electronics engineers
who are working in, the microwave area are faced with the need to understand the
theoretical and experimental design and analysis of microwave devices and circuits.

0-1 MICROWAVE FREQUENCIES

The term microwave frequencies is generally used for those wavelengths measured in
centimeters, roughly from 30 cm to 1 mm (1 to 300 GHz). However, microwave re-
ally indicates the wavelengths in the micron ranges. This means microwave frequen-
cies are up to infrared and visible-light regions. In this revision, microwave frequen-
cies refer to those from 1 GHz up to 10° GHz. The microwave band designation that
derived from World War II radar security considerations has never been officially
sanctioned by any industrial, professional, or government organization. In August
1969 the United States Department of Defense, Office of Joint Chiefs of Staff, by
message to all services, directed the use of a new frequency band breakdown as
shown in Table 0-1. On May 24, 1970, the Department of Defense adopted another
band designation for microwave frequencies as listed in Table 0-2. The Institute of
Electrical and Electronics Engineers (IEEE) recommended new microwave band
designations as shown in Table 0-3 for comparison.

1
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TABLE 0-1 U.S. MILITARY MICROWAVE BANDS

Designation Frequency range in gigahertz

P band 0.225- 0.3%0

L band 0.390- 1.550

S band 1.550- 3.900

C band 3.900- 6.200

X band 6.200- 10.900

K band 10.900- 36.000

Q band 36.000- 46.000

¥ band 46.000- 56.006
W band 56.000-100.000

TABLE 0-2 U.S. NEW MILITARY MICROWAVE BANDS

Designation Frequency range in gigaheriz Designaiion Frequency range in gigahertz

A band 0.100-0.250 H band 6.000- 2.000
B band 0.250-0.500 I band 8.000— 10.000
C band 0.500-1.000 J band 10.000- 20.000
D band 1.000-2.000 K band 20.000- 40.000
E band 2.000-3.000 L band 40.000- 60.000
F band 3.000-4.00() M band 60.000-100.000
G band 4.000-6.000

TABLE 0-3 |EEE MICROWAVE FREQUENCY BANDS

Designation Frequency range in gigaheriz
HF 0.003- 0.030
VHF 0.030- 0.300
UHF 0.300- 1.000
L band 1.000- 2,000
S band 2.000— 4.000
C band 4.000- 8.0060
X band 8.000- 12.000
Ku band 12.000- 18.000
K band 18.000- 27.000
Ka band 27.000- 40.000
Millimeter 40.000--300.000
Submillimeter ==300.000

0-2 MICROWAVE DEVICES

In the late 1930s it became evident that as the wavelength approached the physical
dimensions of the vacuum tubes, the electron transit angle, interelectrode capaci-
tance, and lead inductance appeared to Jimit the operation of vacuum tubes in mi-
crowave frequencies. In 1935 A. A. Heil and O. Heil suggested that microwave
voltages be generated by using transit-time effects together with lumped tuned cir-
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cuits. In 1939 W. C. Hahn and G. F. Metcalf proposed a theory of velocity modula-
tion for microwave tubes. Four months later R. H. Varian and S. F. Varian described
a two-cavity klystron amplifier and oscillator by using velocity modulation. In 1944
R. Kompfner invented the helix-type traveling-wave tube (TWT). Ever since then the
concept of microwave tubes has deviated from that of conventional vacuum tubes as
a result of the application of new principles in the amplification and generation of
microwave energy. :

Historically microwave generation and amplification were accomplished by
means of velocity-modulation theory. In the past two decades, however, microwave
solid-state devices—such as tunnel diodes, Gunn diodes, transferred electron
devices (TEDs), and avalanche transit-time devices have been developed to perform
these functions. The conception and subsequent development of TEDs and avalanche
transit-time devices were among the outstanding technical achievements. B. K. Rid-
ley and T. B. Watkins in 1961 and C. Hilsum in 1962 independently predicted that
the transferred electron effect would occur in GaAs (gallium arsenide). In 1963 J. B.
Gunn reported his “Gunn effect.” The common characteristic of all microwave solid-
state devices is the negative resistance that can be used for microwave oscillation and
amplification. The progress of TEDs and avalanche transit-time devices has been so
swift that today they are firmly established as one of the most important classes of
microwave solid-state devices.

0-3 MICROWAVE SYSTEMS

A microwave system normally consists of a transmitter subsystem, including a mi-
crowave oscillator, waveguides, and a transmitting antenna, and a receiver subsys-
tem that includes a receiving antenna, transmission line or waveguide, a microwave
amplifier, and a receiver. Figure 0-1 shows a typical microwave system.

In order to design a microwave system and conduct a proper test of it, an ade-
quate knowledge of the components involved is essential. Besides microwave
devices, the text therefore describes microwave components, such as resonators, cav-
ities, microstrip lines, hybrids, and microwave integrated circuits,

Microwave Transmitting Receiving Output to
source horn antenna horn antenna  oscilloscope ot

Wavemeter  Calibrated power meter
altenuator
_ | l | Q |

Waveguide
termination

Crystal
mount

Stand Stand Stand

Figure 0-1 Microwave system.



Chapter 3

Microwave Transmission
Lines

3-0 INTRODUCTION

Conventional two-conductor transmission lines are commonly used for transmitting
microwave energy. If a line is properly matched to its characteristic impedance at
each terminal, its efficiency can reach a maximum.

In ordinary circuit theory it is assumed that all impedance elements are lamped
constants. This is not true for a long transmission line over a wide range of frequen-
cies. Frequencies of operation are so high that inductances of short lengths of con-
ductors and capacitances between short conductors and their surroundings cannot be
neglected. These inductances and capacitances are distributed along the length of a
conductor, and their effects combine at each point of the conductor. Since the wave-
length is short in comparison to the physical length of the line, distributed parame-
ters cannot be represented accurately by means of a lumped-parameter equivalent
circuit. Thus microwave transmission lines can be analyzed in terms of voltage, cur-
rent, and impedance only by the distributed-circuit theory. If the spacing between
the lines is smaller than the wavelength of the transmitted signal, the transmission
line must be analyzed as a waveguide.

3-1 TRANSMISSION-LINE EQUATIONS AND SOLUTIONS
3-1-1 Transmission-Line Equations

A transmission line can be analyzed either by the solution of Maxwell’s field equa-
tions or by the methods of distributed-circuit theory. The solution of Maxwell’s
equations involves three space variables in addition to the time variable. The
distributed-circuit method, however, involves only one space variable in addition to
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the time variable. In this section the latter method is used to analyze a transmission
line in terms of the voltage, current, impedance, and power along the line.

Based on uniformly distributed-circuit theory, the schematic circuit of a con-
ventional two-conductor transmission line with constant parameters R, L, G, and C
is shown in Fig. 3-1-1. The parameters are expressed in their respective names per
unit length, and the wave propagation is assumed in the positive z direction.
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Figure 3-1-1 Elementary section of a transmission line.

By Kirchhoff’s voltage law, the summation of the voltage drops around the
central loop is given by
dilz, t)
at

dulz, £)
4 Az (3-1-1)

olz, 1) = i(z, DR Az + LAz + wiz, 1) +

Rearranging this equation, dividing it by 4z, and then omitting the argument (z, ),
which is understood, we obtain
av i
—— =Ri+ L— 3-1-
0z Pl ot ( 2)

Using Kirchhoff 's current law, the summation of the currents at point B in Fig.
3-1-1 can be expressed as

dulz + Az, 1)

iz, ) = vz + Az, DG Az + C Az _T_ + i(z + Az, 1)
- [e(z, 0+ %ﬁ Az]G Az (3-1-3)
+ Cﬁzi[v(z, o+ M ﬂz] + iz, 1) + M Az
ot 0z dz

By rearranging the preceding equation, dividing it by Az, omitting (z, ¢}, and as-
suming Az equal to zero, we have

i du

~E —Go+ T

az at

Then by differentiating Eq. (3-1-2) with respect to : and Eq. (3-1-4) with respect to
¢ and combining the results, the final transmission-line equation in voltage form is

(3-1-4)
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found to be , ,
a‘e dv v
— = RGv + (RC + LG)— + LC—; -1-
o RGv + (RC + LG) o LC Y% (3-1-5)
Also, by differentiating Eq. (3-1-2) with respect to 1 and Eq. (3-1-4) with respect to
z and combining the results, the final transmission-line equation in current form is
& di i
— = RGi + + LGY—+ LC— -1-6
=3 = RGi + (RC )=+ LC— (3-1-6)
All these transmission-line equations are applicable to the general transient solution.
The voltage and current on the line are the functions of both position z and time ¢.
The instantaneous line voltage and current can be expressed as

viz, £} = Re V(z)e/ (3-1-7)
i{z, 1) = Re [(z)e™ (3-1-8)
where Re stands for “real part of.” The factors V{(z) aand 1(z) are complex quantities
of the sinusoidal functions of position z on the line and are known as phasors. The

phasors give the magnitudes and phases of the sinusoidal function at each position of
2, and they can be expressed as

V(z) = Vie™ + V_e¥” (3-1-9)
I(z) = Lie™™ + I_e* (3-1-10)
y=a+jB (propagation constant) (3-1-11}

where V., and 1. indicate complex amplitudes in the positive z direction, V- and 1-
signify complex amplitudes in the negative z direction, « is the attenuation constant
in nepers per unit length, and 8 is the phase constant in radians per unit length.

If we substitute jw for d/0t in Egs. (3-1-2), (3-1-4), (3-1-5), and (3-1-6) and
divide each equation by ¢/, the transmission-line equations in phasor form of the
frequency domain become

av _

& -ZI (3-1-12)
dl
i -YV (3-1-13)
g = y?V (3-1-14)
d*1 ,
R | (3-1-15)
in which the following substitutions have been made:
Z=R+ jouL (ohms per unit length) (3-1-16)
Y=G6+ joC {mhos per unit length) (3-1-17)

y=VZ¥ =a + j8 (propagation constant) (3-1-18)
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For a lossless line, R = G = 0, and the transmission-line equations are expressed as
dv

i — jwll (3-1-19)
% = — jwCV (3-1-20)
‘*"7;_2’ wtLev (3-1-21)
j—:f - —W?LCI (3-1-22)

It is interesting to note that Eqs. (3-1-14) and (3-1-15) for a transmission line are
similar to equations of the electric and magnetic waves, respectively. The only dif-
ference is that the transmission-line equations are one-dimensional.

3.1-2 Solutions of Transmission-Line Equations

The one possible solution for Eq. (3-1-14) is

V=V,e "+ V_e¥ = Vie@e# + V_e=e® (3-1-23)
The factors V. and V- represents complex quantities. The term involving e™*
shows a wave traveling in the positive z direction, and the term with the factor %" is
a wave going in the negative z direction. The quantity Sz is called the electrical

length of the line and is measured in radians.
Similarly, the one possible solution for Eq. (3-1-15) is

I = Yo(Vie ™ — Voe¥) = Yo(V.e e # — V_e%e#) (3-1-24)

In Eq. (3-1-24) the characteristic impedance of the line is defined as

1 \/_E___ R+ jowL _ . .
Zo .- Vy \f———G_l_ij Ro = jXo (3-1-25)

The magnitude of both voltage and current waves on the line is shown in Fig. 3-1-2.
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e —af £ ol
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(a) Voltage wave (b) Curren wave

Figure 3-1-2 Magnitude of voltage and current traveling waves.
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At microwave frequencies it can be seen that
R<€wl and G <€ wC (3-1-26)
By using the binomial expansion, the propagation constant can be expressed as
y = V(R + joL) G + joC)

e[+ £+ 2)

JoC
zjvac[(l + %%)(1 + %%)] (3-1-27)
= R G
e [l 2 (ﬂt’L ch) ]

=1 R\/%+G\/; +jwVLC

Therefore the attenuation and phase constants are, respectively, given by

L1 C L
a = Z(R\/; + G\/;) (3-1-28)
8 = oVLC (3-1-29)

Simiiarly, the characteristic impedance is found to be
£(l +—~—)( —li) (3-1-30)

From Eq. (3-1-29) the phase velocity is

L1}

— (3-1-31)
\/_

The product of LC is independent of the size and separation of the conductors and
depends only on the permeability u and permittivity of € of the insulating medium.
If a lossless transmission line used for microwave frequencies has an air dielectric
and contains nc ferromagnetic materials, free-space parameters can be assumed.
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Thus the numerical value of 1/VLC for air-insulated conductors is approximately
equal to the velocity of light in vacuum. That s,

| |
v, = —— = =¢=3x108ms (3-1-32
P =VIe Vs )

When the dielectric of a lossy microwave transmission line is not air, the phase ve-
locity is smaller than the velocity of light in vacuum and is given by

1 ¢

U = (3-1-33
Ve Ve )

In general, the relative phase velocity factory can be defined as

actual phase velocity
velocity of light in vacuum

Velocity factor =

Ve 1
Uy = —
[

= 3-1-34
e ( }

A low-loss transmission line filled only with dielectric medium, such as a coaxial
line with solid dielectric between conductors, has a velocity factor on the order of
about 0.65.

Example 3-1-1: Line Characteristic Impedance and Propagation Constant
A transmission line has the following parameters:
R=20/m G =05 mmho/m f=1GHz
L = 8 nH/m C =023 pF
Calculate: (a) the characteristic impedance; (b) the propagation constant.

Solution
a. From Eq. (3-1-25) the line characteristic impedance is

R+ij_\/ 2+ j2m X 10° X 8 X 107
0

Zo=Ngrjoc VO5Sx107 + j2m x 10° X 0.23 X 107

| s031/87.72 _ _
= V1529 x 10-/709F° 181.39/8.40° = 179.44 + j26.50

b. From Eq. (3-1-18) the propagation constant is
vy = V(R + jul)(G + jwC) = V(50.31/87.72°)(15.29 X 107%/70.91°)
= V769.24 x 107%/158.63°
= 0.2774/79.31° = 0.051 + j0.273
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3-2 REFLECTION COEFFICIENT AND TRANSMISSION
COEFFICIENT

3-2-1 Reflection Coefficient

In the analysis of the solutions of transmission-line equations in Section 3-1, the
traveling wave along the line contains two components: one traveling in the positive
z direction and the other traveling the negative z direction. If the load impedance is
equal to the line characteristic impedance, however, the reflected traveling wave

does not exist.
Figure 3-2-1 shows a transmission line terminated in an impedance Z.. It is

usually more convenient to start solving the transmission-line probiem from the re-
ceiving rather than the sending end, since the voltage-to-current relationship at the
load point is fixed by the load impedance. The incident voltage and current waves
traveling along the transmission line are given by

V=Ve?"+ V_eg'" (3-2-1)
I=Ler*+1¢e" (3-2-2)
in which the current wave can be expressed in terms of the voltage by
V-
1= %e"” - (3-2-3)
If the line has a length of €, the voltage and current at the receiving end become
Ve=V,e " + V_e¥ (3-2-4)
1
L = Z(Vﬂe'*‘ - V.e™) (3-2-5)
The ratic of the voltage to the current at the receiving end is the load impedance.
That is,
Ve Vie "+ Voo
L= L TPV e — Ve (3-2:6)
Z‘ 1,— -
—wWW—o T [ o
V, — LA v [ E—
¢ (N) Sending I % I Receiving [ ]zﬂ
end end
od .
Ot £ 0
oz da——0

Figure 3-2-1 Transmission line terminated in a load impedance.
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The reflection coefficient, which is designated by I’ (gamma), is defined as

reflected voltage or current
incident voltage or current

P
r - Vinc - Imc (3-2-?)

Reflection coefficient =

If Eq. (3-2-6) is solved for the ratio of the reflected voltage at the receiving end,
which is V_e. to the incident voltage at the receiving end, which is V. e, the re-
sult is the reflection coefficient at the receiving end:

l.. _ V_e”f _ Ze - Zo
¢ V+ e -t Zt’ + ZD
If the load impedance and/or the characteristic impedance are complex quantities, as

is usually the case, the reflection coefficient is generally a complex quantity that can
be expressed as

(3-2-8)

[ = |Tele (3-2-9)

where |T'¢} is the magnitude and never greater than unity—that is, |Ce| = 1. Note
that @ is the phase angle between the incident and reflected voltages at the receiving
end. It is usually called the phase angle of the reflection coefficient.

The general solution of the reflection coefficient at any point on the line, then,
corresponds to the incident and reflected waves at that point, each attenuated in the
direction of its own progress along the line. The generalized reflection coefficient is
defined as

V.e*¥

r= Vie ™

(3-2-10)

From Fig. 3-2-1 letz = € — d. Then the reflection coefficient at some point located

a distance d from the receiving end is
Vet V. e¥*

TV T Ve

T, e~ = [pe (3-2-11)
Next, the reflection coefficient at that point can be expressed in terms of the
reflection coefficient at the receiving end as

I, = Do de 284 = |Tgle2de/® (3-2-12)

This is a very useful equation for determining the reflection coefficient at any point
along the line. For a lossy line, both the magnitude and phase of the reflection
coefficient are changing in an inward-spiral way as shown in Fig. 3-2-2. For a loss-
less line, @ = O, the magnitude of the reflection coefficient remains constant, and
only the phase of I' is changing circularly toward the generator with an angle of
—2Bd as shown in Fig. 3-2-3.

It is evident that T will be zero and there will be no reflection from the re-
ceiving end when the terminating impedance is equal to the characteristic impedance
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Figure 3-2-2 Reflection coefficient for
lossy line.

Figure 3-2-3 Reflection coefficient for
lossless line.

of the line. Thus a terminating impedance that differs from the characteristic
impedance will create a reflected wave traveling toward the source from the termina-
tion. The reflection, upon reaching the sending end, will itself be reflected if the
source impedance is different from the line characteristic impedance at the send-
ing end.

3-2.2 Transmission Coefficieni

A transmission line terminated in its characteristic impedance Z, is called a properly
terminated line. Otherwise it is called an improperly terminated line. As described
earlier, there is a reflection coefficient I' at any point along an improperly termi-
nated line. According to the principle of conservation of energy, the incident power
minus the reflected power must be equal to the power transmitted to the load. This
can be expressed as

ri=bp
L -Ti=3T (3-2-13)

Equation (3-2-13) will be verified later. The letter T represents the transmission
coefficient, which is defined as
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|
— (3-2-14}

T = transmitted voltage or current _ Vi
incident voltage or current Vie  Line

Figure 3-2-4 shows the transmission of power along a transmission line where P is
the incident power, P, the reflected power, and P, the transmitted power.

ZO —_— Jpim: —_—
——ANW—O o—
-— -~ P
Prs Pret‘ "
v, GD 7, Load I:|
I ¢ —

Figure 3-2-4 Power transmission on a line.

Let the traveling waves at the receiving end be

Ve ™ + Voeg? = Vet (3-2-15)

V. V- Vi

S eyt T avE = -

Z e Zs e Zee (3-2-16)
Multiplication of Eq. (3-2-16) by Z. and substitution of the result in Eq. (3-2-15)
yield

_ V_eW _ Ze - Zo
I = Ve  ~ Zot Za (3-2-17)
(3-2-18)

vtr _ zzf

which, in turn, on substitution back into Eq. (3-2-15), results in
T=_<=
V+ Zf + ZO

The power carried by the two waves in the side of the incident and reflected waves is
_ (V+e—af)2 (v_eaf)z
A (3-2-19)

Pinc_Pref— 220

P inr =
The power carried to the load by the transmitted waves is
B (Vu- e—uf)z
Py = —FZZg {(3-2-20)
(3-2-21)

By setting P = P\ and using Eqs. (3-2-17) and (3-2-18), we have
Zc
T=24(1-T
Zo( 9

This relation verifies the previous statement that the transmitted power is equal to

the difference of the incident power and reflected power.
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Example 3-2-1: Reflection Coefficient and Transmission Coefficient

A certain fransmission line has a characteristic impedance of 75 + §0.01 £ and is ter-
minated in a Joad impedance of 70 + j50 . Compute (a) the reflection coefficient;
(b) the transmission coefficient. Verify: (c) the relationship shown in Eq. (3-2-21);
(d) the transmission coefficient equals the algebraic sum of 1 plus the reflection
coefficient as shown in Eq. (2-3-18).

Solution

a. From Eq. (3-2-17) the reflcction coefficient is

_Ze—Zo _ 70 + j50 — (75 + jO.01)
Zo + Zo 70 + jSO + (75 + j0O.01)

- 0ATL 0.33/76.68° = 0.08 + j0.32

T 153, 38/19.03°
b. From Eq. {(3-2-18) the transmission coefficient is
T = 2Ly _ 2(70 + j50)

Ze+ Zo 70 + j50 + (75 + jO.01)

_ 172.05/35.5¢°
12/16.51° = 1.08 + ;0.
= 153.3819.08 [16.51° = 1.08 + j0.32

C.

= (1.12/16.51°)* = 1.25/33.02°

Ze, 0 70+ 50 o2
71~ = 001[1 {0.33)/76.68°]

86/35.54°
= % o — o
o X 110/=2.6> = 1.25/33

Thus Eq. (3-2-21) is verified.
d. From Eq. (2-3-18) we obtain

T=108+032=1+008+j032=1+T

3-3 STANDING WAVE AND STANDING-WAVE RATIO
3-3-1 Standing Wave

The general solutions of the transmission-line equation consist of two waves traveling
in opposite directions with unequal amplitude as shown in Egs. (3-1-23) and
(3-1-24). Equation (3-1-23) can be written

v = V+ e—ﬂze—jﬁz + V_ea:ejﬂz
= V.e™*[cos (Bz) — jsin (Bz)] + V_e*[cos (B2) + j sin (Bz)] (3-3-1)
= (Voe™ + V_e*) cos (Bz) — j(Vie™ — V_e*) sin (82)
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With no loss in generality it can be assumed that V.e™ and V_e™ are real. Then
the voltage-wave equation can be expressed as

V, = Voe (3-3-2)
This is called the equation of the voltage standing wave, where
Vo = [(V.e ™ + V_e*)? cos® (Bz) + (V.e™ - V_e ) sin® (82)]'2 (3-3-3)

which is called the standing-wave pattern of the voltage wave or the amplitude of
the standing wave, and

¢ = arctan (&epm = Ve” tan (Bz)) (3-34)

e+ Voe™

which is called the phase pattern of the standing wave. The maximum and minimum
values of Eq. (3-3-3) can be found as usual by differentiating the equation with re-
spect to Bz and equating the result to zero. By doing so and substituting the proper
values of Bz in the equation, we find that

1. The maximum amplitude is

Vmax = v+ e‘uz + V_em = V+e_a:(l + |F|) (3'3'5)
and this occurs at 8z = nm, where n = 0, =1, x2,....
2. The minimum amplitude is
Voo = Vie™® = Ve = Voe™(1 = [T)) (3-3-6)

and this occurs at 8z = (2n — 1) /2, where n = 0, =1, 2.,
3. The distance between any two successive maxima or minima is one-half wave-
length, since

nmr nr A
= = —_—= — = —_— = -+
Bz = nw z 3 27 /A n> (n=0, =1, £2, )
Then
A
= 5 (3-3-7)
It is evident that there are no zeros in the minimum. Similarly,
Lo = Le ™ + Ie* = Le (1 + {T) (3-3-8)
Lin = Lie™® — 1% = Le (1 - Irl) (3-3-9)

The standing-wave patterns of two oppositely traveling waves with unequal amplitude
in lossy or lossless line are shown in Figs. 3-3-1 and 3-3-2.
A further study of Eq. (3-3-3) reveals that
1. When V. # 0 and V. = 0, the standing-wave pattern becomes

Vo=V.e ™ (3-3-10)
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Figure 3-3-1 Standing-wave pattern in a lossy line.
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Figure 3-3-2  Voliage standing-wave
0 2 pattern in a lossless line.

2. When V, = 0 and V. # 0, the standing-wave pattern becomes
Vo= V_e“ (3-3-11)

3. When the positive wave and the negative wave have equal amplitudes (that is,
| V.ie™=| = | V_e*|) or the magnitude of the reflection coefficient is unity, the
standing-wave pattern with a zero phase is given by

V, = 2V, e™™ cos (82) (3-3-12)

which is called a pure standing wave.

Similarly, the equation of a pure standing wave for the current is
L = —j2Yo Ve ™ sin (B2) (3-3-13)

Equations (3-3-12) and (3-3-13) show that the voltage and current standing waves
are 90° out of phase along the line. The points of zero current are called the current
nodes. The voltage nodes and current nodes are interlaced a quarter wavelength
apart.

The voltage and current may be expressed as real functions of time and space:

vs = (z, 1) = Re[V(z)e™] = 2V.e ™ cos (Bz) cos (wi) (3-3-14)
i = (2, t) = Re[L;(2)e’] = 2Y, V. e * sin (Bz) sin {w?) (3-3-15)
The amplitudes of Egs. (3-3-14) and (3-3-15) vary sinusoidally with time; the



Amplitude Vand 1

74 Microwave Transmission Lines Chap. 3

voltage is a maximum at the instant when the current is zero and vice versa. Figure
3.3-3 shows the pure-standing-wave patterns of the phasor of Egs. (3-3-12) and
(3-3-13) for an open-terminal line.

- Figure 3-3.3 Pure standing waves of

z voltage and current.

3-3-2 Standing-Wave Ratio

Standing waves result from the simultaneous presence of waves traveling in opposite
directions on a transmission line. The ratio of the maximum of the standing-wave
pattern to the minimum is defined as the standing-wave ratio, designated by p. That
is,

maximum voltage or current

minimum voltage or current

| Vo] _ ||

Vol Tl (3-3-16)
The standing-wave ratio results from the fact that the two traveling-wave components
of Eq. (3-3-1) add in phase at some points and subtract at other points. The distance
between two successive maxima or minima is A/2. The standing-wave ratio of a pure
traveling wave is unity and that of a pure standing wave is infinite. It should be noted
that since the standing-wave ratios of voltage and current are identical, no distinc-
tions are made between VSWR and ISWR.

When the standing-wave ratio is unity, there is no reflected wave and the line is
called a flat line. The standing-wave ratio cannot be defined on a fossy line because
the standing-wave pattern changes markedly from one position to another. On a low-
loss line the ratio remains fairly constant, and it may be defined for some region. For
a lossless line, the ratio stays the same throughout the line.

Since the reflected wave is defined as the product of an incident wave and its
reflection coefficient, the standing-wave ratio p is related to the reflection coefficient
I" by

Standing-wave ratio =

P

_1+|r]

p= lTlr_l (3-3-17)
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and vice versa

el A
Tt =2 (3-3-18)
This relation is very useful for determining the reflection coefficient from the
standing-wave ratio, which is usually found from the Smith chart. The curve in Fig.
3-3-4 shows the relationship between reflection coefficient |T'| and standing-wave
ratio p.

0.9 T . ,
08|
0.7} i
0.6 |- .
0s | i
0.4 | .
03} i
02 |
0.1} i

0.0 ] ] 1 I I 1 ] ]
I 2 3 4 5 6 7 3 9 10

VSWR p

Reflection coefficient | T

Figure 3-3-4 SWR versus reflection coefficient.

As a result of Eq. (3-3-17), since |I"| = 1, the standing-wave ratio is a posi-
tive real number and never less than unity, p = 1. From Eq. (3-3-18) the magni-
tude of the reflection coefficient is never greater than unity.

Example 3-3-1: Standing-Wave Ratio

A transmission line has a characteristic impedance of 50 + j0.01 Q and is terminated
in a load impedance of 73 — j42.5 {). Calculate: (a) the reflection coefficient; (b) the
standing-wave ratio.

Solution

a. From Eq. (3-2-8) the refiection coefficient is

Ze—Zo 73— j42.5 - (50 + jO.01) Cnmo
r= Zo+Zo 73— j42.5 + (50 + jO.01) 037 [~42.7

b. From Eq. (3-3-17) the standing-wave ratio is

_ 1+ _1+0377 _
PET=Ir| 1-=0317

221
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3-5 SMITH CHART

Many of the computations required to solve transmission-line problems involve the
use of rather complicated equations. The solution of such problems is tedious and
difficult because the accurate manipulation of numerous equations is necessary. To
simplify their solution, we need a graphic method of arriving at a quick answer.

A number of impedance charts have been designed to facilitate the graphic so-
lution of transmission-line problems. Basically all the charts are derived from the
fundamental relationships expressed in the transmission equations. The most popular
chart is that developed by Phillip H. Smith [1]. The purpose of this section is to
present the graphic solutions of transmission-line problems by using the Smith chart.

The Smith chart consists of a plot of the normalized impedance or admittance
with the angle and magnitude of a generalized complex reflection coefficient in a
unity circle. The chart is applicable to the analysis of a lossless line as well as a lossy
line. By simple rotation of the chart, the effect of the position on the line can be de-
termined. To see how a Smith chart works, consider the equation of reflection
coefficient at the load for a transmission line as shown in Eq. (3-2-8%

Z. — L,

=7z~ ITele® =T, +jI. (3-5-1)

T,
Since | F¢| = 1, the value of I'e must lie on or within the unity circle with a radius of
1. The reflection coefficient at any other location along a line as shown in Eq.
(3-2-12) is

Iy = l"ge‘z““e‘ﬁ‘s" = |l"e|e‘2“"e’“’“23‘” (3-5-2)

which is also on or within the unity circle. Figure 3-5-1 shows circles for a constant
reflection coefficient T' and constant electrical-length radials Bd.

From Egs. (3-4-29) and (3-4-44) the normalized impedance along a line is
given by

+ Tee™™
Z 1 4 (3-5-3)

A
With no loss in generality, it is assumed that 4 = 0, then
1+ T, Ze Re + jXe .
== = —_— = —_— = + 3-5-4
and
ro=21=r+n (3-5-5)
¢Tax1 I
Substitution of Eq. (3-5-5) into Eq. (3-5-4) yields
—_ 2 2
I Bl Nl ki (3-5-6)
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Iri=1

=y

Figure 3-5-1 Constant I' circles and
electrical-length radials 8d.
and
2l
x = —(1 T+ T {3-5-7)
Equations (3-5-6) and (3-5-7) can be rearranged as
r 2 l"z 1 2
r - + i = =
(F l+r) (1+r) (3-5-8)
and
1y 1\?
T, - 17+ (rf _ —) - (—) (3-5-9)
x X

Equation (3-5-8) represents a family of circles in which each circle has a con-
stant resistance r. The radius of any circle is 1/{1 + r), and the center of any circle
is r/(1 + r) along the real axis in the unity circle, where r varies from zero to
infinity. All constant resistance circles are plotted in Fig. 3-5-2 according to Eq.
(3-5-8).

Equation (3-5-9) also describes a family of circles, but each of these circles
specifies a constant reactance x. The radius of any circle is (1/x), and the center of
any circle is at

r rF = 1 F i =

(where —o0 = x =< o)

-

All constant reactance circles are plotted in Fig. 3-5-3 according to Eq. (3-5-9).
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Figure 3-5-2  Constant resistance r circles.

Figure 3-5-3 Constant reactance x circles.
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There are relative distance scales in wavelength along the circumference of the
Smith chart. Also, there is a phase scale specifying the angle of the reflection
coefficient. When a normalized impedance z is located on the chart, the normalized
impedance of any other location along the line can be found by use of Eq. (3-5-3)

_ 1 4+ Fee™™™
= 1 — [‘fe—z'rd (3'5'10)
where
[ = I[‘ele—Zade_j(e{—Z.ﬁd} (3-5-11)

The Smith chart may also be used for normalized admittance. This is evident
since

1
Y. = 1. Go+ jBo and Y=-=G + jB (3-5-12)
Zy Z
Then the normalized admittance is
Y Z, 1
e = — = — = + 'b aty.
y=y."z7 "z 8%/ (3-5-13)

Figure 3-5-4 shows a Smith chart which superimposes Figs. 3-5-2 and 3-5-3
into one chart. The characteristics of the Smith chart are summarized as follows:

1. The constant r and constant x loci form two families of orthogonal circles in
the chart.

2. The constant r and constant x circles all pass through the point (I, = 1,
F; = 0)

3. The upper half of the diagram represents + jx.

4. The lower half of the diagram represents — jx.

5. For admittance the constant r circles become constant g circles, and the con-
stant x circles become constant susceptance b circles.

6. The distance around the Smith chart once is one-half wavelength (A/2).

7. At a point of zwa = 1/p, there is a Viuin on the line.

8. At a point of Zme = p, there is a Vinax on the line.

9. The horizontal radius to the right of the chart center corresponds to Vi, Jin,
Zmax, and p (SWR).

10. The horizontal radius to the left of the chart center corresponds t0 Viin, fmax,
Zmin, and 1/p.

11. Since the normalized admittance y is a reciprocal of the normalized impedance
z, the corresponding quantities in the admittance chart are 180° out of phase
with those in the impedance chart.

12. The normalized impedance or admittance is repeated for every half wavelength
of distance.

13. The distances are given in wavelengths toward the generator and also toward
the load.
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IMPEDAMNCE OR ADMITTANCE COORDINATES
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Figure 3-5-4 Smith chart.

The magnitude of the reflection coefficient is related to the standing-wave ratio
by the following expression:

p—1

r|=—— 3-5-
Tl =2 (3-5-14)
A Smith chart or slotted line can be used to measure a standing-wave pattern directly
and then the magnitudes of the reflection coefficient, reflected power, transmitted
power, and the load impedance can be calculated from it. The use of the Smith chart
is illustrated in the following examples.

Example 3-5-1: Location Determination of Voltage Maximum and Minimum from
Load

Given the normalized load impedance ze = 1 + j1 and the operating wavelength



Sec. 3.5 Smith Chart 87

9

v, Z, Z, =14/

. O
b4 o

Figure 3-5-5 Diagram for Example 3-5-1.
A = 5 cm, determine the first V,,,, first Vy,, from the load, and the VSWR p as shown
in Fig. 3-5-5.

Solution

L. Enterz¢ = 1 + j1 on the chart as shown in Fig. 3-5-6.

2. Read 0.162A on the distance scale by drawing a dashed-straight line from the
center of the chart through the load point and intersecting the distance scale.

3. Move a distance from the point at 0.162A toward the generator and first stop at
the voltage maximum on the right-hand real axis at 0.25A, Then

di (Vi) = (0.25 — 0.162)A = (0.088)(5) = 0.44 cm

4. Similarly, move a distance from the point of 0.162A toward the generator and
first stop at the voltage mintmum on the left-hand real axis at 0.5A. Then

&:(Vein} = (0.5 — 0.162)A = (0.338K5) = 1.69 cm

0.125 045, Vear)

Figure 3-§-6 Graphic solution for
Example 3-5-1.
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5. Make a standing-wave circle with the center at {1, 0) and pass the circle through
the point of 1 + j1. The Jocation intersected by the circle at the right portion of
the real axis indicates the SWR. This isp =26

Example 3-5-2: Impedance Determination with Short-Circuit Minima Shilt

The location of a minimum instead of a maximum is usually specified because it can be
determined more accurately. Suppose that the characteristic impedance of the line Ro is
50 ), and the SWR p = 2 when the line is loaded. When the load is shorted, the
minima shift 0.15A toward the load. Determine the load impedance. Figure 3-5-7
shows the diagram for the example.

/N
|
\/-\ 1 Shosted

— 0.15x l[--—Loaded

=y

ZS
S
v, Ry=50%

Figure 3-5-7 Diagram for Example 3-5-2.

L0

Solution

1. When the line is shorted, the first voltage minimum occurs at the place of the
load as shown in Fig. 3-5-8.

Figure 3-5-8 Graphic solution for
Example 3-3-2,
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2. When the line is loaded, the first voltage minimum shifts 0.15A from the load.
The distance between two successive minima is one-half wavelength.

3. Plot a SWR circle for p = 2.

4. Move a distance of 0.15A from the minimum point along the distance scale
toward the load and stop at 0.15A.

5. Draw a line from this point to the center of the chart.
6. The intersection between the line and the SWR circle is

ze=1-— jO.65
7. The load impedance is
Z: = (1 — j0.65)(50) = 50 ~ j32.50

3-6 IMPEDANCE MATCHING

Impedance matching is very desirable with radio frequency (RF) transmission lines.
Standing waves lead to increased losses and frequently cause the transmitter to mal-
function. A line terminated in its characteristic impedance has a standing-wave ratio
of unity and transmits a given power without reflection. Also, transmission
efficiency is optimum where there is no reflected power. A “flat” line is nonreso-
nant; that is, its input impedance always remains at the same value Zy when the fre-
quency changes.

Matching a transmission line has a special meaning, one differing from that
used in circuit theory to indicate equal impedance seen looking both directions from
a given terminal pair for maximem power transfer. In circuit theory, maximum
power transfer requires the load impedance to be equal to the complex conjugate of
the generator. This condition is sometimes referred to as a conjugate match. In
transmission-line problems marching means simply terminating the line in its charac-
teristic impedance.

A common application of RF transmission lines is the one in which there is a
feeder connection between a transmitter and an antenna. Usually the input imped-
ance to the antenna itself is not equal to the characteristic impedance of the line.
Furthermore, the output impedance of the transmitter may not be equal to the Zo of
the line. Matching devices are necessary to flatten the line. A complete matched
transmission-line system is shown in Fig, 3-6-1.

z, _____
o LT PR
| Matching | }aMatchins |
: device | i device |
| ! '
V:(N) | aal zZ, l | Z,
B TN
Z.;»:Z: zogzo zolzo Z;{ze
L o o+ to
e | |

Figure 3-6-1 Maiched transmission-line system,
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For a low-loss or lossless transmission line at radio frequency, the characteris-
tic impedance Zo of the line is resistive. At every point the impedances looking m
opposite directions are conjugate. If Zo is real, it is its own conjugate. Matching can
be tried first on the load side to flatten the line; then adjustment may be made on the
transmitter side to provide maximum power transfer. At audio frequencies an iron-
cored transformer is almost universally used as an impedance-matching device.
Occasionally an iron-cored transformer is also used at radio frequencies. In a practi-
cal transmission-line system, the transmitter is ordinarily matched to the coaxial
cable for maximum power transfer. Because of the variable loads, however, an
impedance-matching technique is often required at the load side.

Since the matching problems involve parallel connections on the transmission
line, it is necessary to work out the problems with admittances rather than imped-
ances. The Smith chart itself can be used as a computer to convert the normalized
impedance to admittance by a rotation of 180°, as described earlier.

3.6-1 Single-Stub Matching

Although single-lumped inductors or capacitors can match the transmission line, it is
more common to use the susceptive properties of short-circuited sections of trans-
mission lines. Short-circuited sections are preferable to open-circuited ones because
a good short circuit is easier to obtain than a good open circuit.

For a lossless line with Y, = Yo, maximum power transfer requires Yy = Yo,
where Y, is the total admittance of the line and stub looking to the right at point 1-1
(see Fig. 3-6-2). The stub must be located at that point on the line where the real
part of the admittance, looking toward the load, is Yo. In a normalized unit y,, must
be in the form

ym=yaxy=1 (3-6-1})

—~f a

Figure 3-6-2  Single-stub matching for Example 3-6-1.
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if the stub has the same characteristic impedance as that of the line. Qtherwise
Yn = Yd =+ Y, = Yo (3-6-2)

The stub length is then adjusted so that its susceptance just cancels out the suscep-
tance of the line at the junction.

Example 3-6-1: Single-Stub Matching

A lossless line of characteristic impedance Ry = 50 £} is to be matched to a load
Z,=50/[2 + j2 + \/5)] () by means of a lossless short-circuited stub. The charac-
teristic impedance of the stub is 100 (). Find the stub position (closest to the load) and
length so that a match is obtained.

Solution
1. Compute the normalized load admittance and enter it on the Smith chart (see
Fig. 3-6-3).

pe=t=B o Ve =24 3

2. Draw a SWR circle through the point of y. so that the circle intersects the unity
circle at the point y,.
ya=1- j2.6

Note that there are an infinite number of y,. Take the one that allows the stub to
be attached as closely as possible to the load.

o +i5.2

0.031

0.031

-j5.2

Figure 3-6-3 Graphic solution for Example 3-6-1.
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3. Since the characteristic impedance of the stub is different from that of the line,
the condition for impedance matching at the junction requires

Yn=Y.+Y,

where Y, is the susceptance that the stub will contribute.

It is clear that the stub and the portion of the line from the load to the junc-
tion are in parallel, as seen by the main line extending to the generator. The ad-
mittances must be converted to normalized values for matching on the Smith
chart. Then Eq. (3-6-2) becomes

yuYo = ya¥o + ¥, Yo

Y 100
v = (v — yd)(‘?i) =f1-(1- j2.6)]¥ = +j5.20

4. The distance between the load and the stub position can be calculated from the
distance scale as

d = {0.302 — 0.215)A = 0.087A

5. Since the stub contributes a susceptance of +j5.20, enter +35.20 on the chart
and determine the required distance ¢ from the short-circuited end (z=0,
y = =), which corresponds to the right side of the real axis on the chart, by
transversing the chart toward the generator until the point of + j5.20 is reached.
Then

£ = {0.50 — 0.031)A = 0.4694

When a line is matched at the junction, there will be no standing wave in the line
from the stub to the generator.

6. If an inductive stub is required,
yi=1+ j2.6
the susceptance of the stub will be
yi = —js52
7. The position of the stub from the load is
d’ =[0.50 — (0.215 — 0.198)]A = 0.483A
and the length of the short-circuited stub is
€ =0.031A

3-6-2 Double-Stub Matching

Since single-stub matching is sometimes impractical because the stub cannot be
placed physically in the ideal location, double-stub matching is needed. Double-stub
devices consist of two short-circuited stubs connected in parallel with a fixed length
between them. The length of the fixed section is usvally one-eighth, three-eighths,
or five-eighths of a wavelength. The stub that is nearest the load is used to adjust the
susceptance and is located at a fixed wavelength from the constant conductance



I A T o

10.

11.

12.
13.
14.

Question Bank
Write a short note on TEDs

Describe the mechanism of Gunn effect.

Describe the drift velocity and current fluctuation in n-type Ga-As.

Write a note on microwave frequencies

Write a short note on microwave devices and microwave systems

Derive the general transmission line equation to find voltage and current on the line in
terms of position ‘z’ and time ‘t

From the solutions of transmission line equations derive the equation for characteristic
impedance and prorogation constant

A transmission line has the following parameters: R=2Q/m, G=0.5m mho/m, f=1GHz.
L=8nH/m, C=0.23pF/m. Calculate i) Characteristic Impedance, ii) Propagation
Constant

Define reflection coefficient. Derive the equation for reflection coefficient at load end
at a distance ‘d’ from the load

Define transmission coefficient. Derive the equation for transmission coefficient and
also deduce its relation with reflection coefficient.

A certain transmission line has a characteristic impedance of 75+ j0.01Q and is
terminated with load impedance of 70+j50 Q. Compute i) Reflection coefficient ii)
Transmission coefficient iii) prove Relationship between reflection coefficient and
transmission coefficient.

What is standing wave? Write necessary equation to describe the standing wave

Write a note on standing wave ratio

A transmission line has a characteristic impedance of 50+j0.01Q and terminated in a

load impedance of 73-j42.5Q. Calculate i) Reflection coefficient ii) SWR



